手机版

圆周角定理是什么?圆周角定理推论

时间:2023-09-20 编辑:赚钱 浏览:0

  圆周角定理是什么?圆周角定理推论 ?圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半。这一定理叫做圆周角定理。该定理反映的是圆周角与圆心角的关系。06cfaf11ed32e0d830609e9828433d8d_4-810-jpg_6-1080-0-0-1080.jpg

  1、《圆周角的概念和圆周角定理》备课教案一等奖

  教材分析

  1本节课是在圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角性质的探索。

  2.圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,在对圆与其他平面图形的研究中起着桥梁和纽带的作用。

  学情分析

  九年级的学生虽然已具备一定的说理能力,但逻辑推理能力仍不强,根据数学的认知规律,数学思想的'学习不可能“一步到位”,应当逐步递进、螺旋上升。 在具体的问题情境下,引导学生采用动手实践、自主探究、合作交流的学习方法进行学习,充分发挥其主体的积极作用,使学生在观察、实践、问题转化等数学活动中充分体验探索的快乐,发挥潜能,使知识和能力得到内化,体现“主动获取,落实双基,发展能力”的原则。

  教学目标

  (1)知识目标:

  1、理解圆周角的概念。

  2、经历探索圆周角与它所对的弧的关系的过程,了解并证明圆周角定理及其推论。

  3、有机渗透“由特殊到一般”、“分类”、“化归”等数学思想方法。

  (2)能力目标:

  引导学生从形象思维向理性思维过渡,有意识地强化学生的推理能力,培养学生的实践能力与创新能力,提高数学素养。

  (3)情感、态度与价值观的目标:

  1、创设生活情境激发学生对数学的好奇心、求知欲,营造“民主”“和谐”的课堂氛围,让学生在愉快的学习中不断获得成功的体验。

  2、培养学生以严谨求实的态度思考数学。

  教学重点和难点

  探索并证明圆周角与它所对的弧的关系是本课时的重点。

  用分类、化归思想合情推理验证“圆周角与它所对的弧的关系”是本课时的难点。

  2、圆周角定理的教学反思

  我国是最早了解勾股定理的'国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾(短直角边)等于三,股(长直角边)等于四,那么弦等于五。即“勾三、股四、弦五”。它被记载于我国古代著名的数学著作《周髀算经》中,在这本书的另一处,还记载了勾股定理的一般形式。中国古代的几何学家研究几何是为了实用,是唯用是尚的。在勾股定理教学中反思如下:

  一转变师生角色,让学生自主学习。

  由同学们的作图,我们发现有的直角三角形的三边具有这种关系,有的直角三角形不具有这种性质。当然作图存在着误差。可仍然证明不了我们的猜想是否正确。下面我们用拼图的方法再来验证一下。请同学们拿出准备好的直角三角形和正方形,利用拼图和面积计算来证明a2+b2=c2(学生分组讨论。)学生展示拼图方法,课件辅助演示。

  新课标下要求教师个人素质越来越高,教师自身要不断及时地学习新知识,接受新信息,对自己及时充电、更新,而且要具有诙谐幽默的语言表达能力。既要有领导者的组织指导能力,更重要的是要有被学生欣赏佩服的魅力,只有学生配合你,信任你,喜欢你,教师才能轻松驾御课堂,做到应付自如,高效率完成教学目标。

  “教师教,学生听,教师问,学生答,教室出题,学生做”的传统教学摸模式,已严重阻阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1平方米到底有多大?因此,新课标要求老师一定要改变角色,变主角为配角,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。

  数学的创造性不能没有逻辑思维,学习数学可以帮助养成理性思考的习惯。数学并不是公式的堆垒,也不是图形的汇集,数学有逻辑性很强的体系。数学不是只强调计算与规则的课程,而是讲道理的课程。培养与运用逻辑思维,并不是不顾及学生的可接受性一味地片面强调推理的严密和体系的完整,而是既要体现逻辑推理的作用,又不片面夸大它。几何的教学体系有别于几何的科学体系,在几何教学中,讲道理并完全不等同于纯粹的形式证明,几何教学培养逻辑思维能力同样要有的放矢,循序渐进,从直观到抽象,从简单到复杂?? 二转变教学方式,让学生探索、研究、体会学习过程。

  学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节,感受不到数学与生活的联系,这是当今课堂教学存在的普遍问题,对于学生实践能力的培养非常不利的。现在的数学教学到处充斥着过量的、重复的、不断循环的、人为挖掘的训练。 学习的过程性:

  1.关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积思考,能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理的表达活动过程和所获得的结论等;

  2.关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理。 学习的知识性:掌握勾股定理,体会数形结合的思想。

  试一试:我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺。如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面。请问这个水池的深度和芦苇的长度各是多少?

  新课标对几何内容的安排。安排采取了首先是直观和经验,接着是说理与抽象,最后是演绎

  的方案。以直线形为例,先借助直观认识一个直线形,进而借助多种手段合乎情理地发现它的某种几何性质,接着通过演绎推理把这个性质搞定。看上去,强化了直观和实验,弱化了推理,实际上,在这里直观和推理两者都很重要,而且两者之间互为支撑,有互逆的性质。让直观几何和推理几何并重,把发现和证明绑在一起,与传统的几何课程体系确有不同。说到几何,新课标对几何的重视程度丝毫没有减弱,而是在加强。例如直观和实验几何的触角已经伸向了小学低年级,同时欧氏几何的体系和内容差不多还是完整呈现。如果说有所弱化,就是具体要求降低了,这种降低主要体现在两个方面,一个是对推理几何的难度要求有所限制,另外是弱化了相似形和圆(包括圆与直线之间的关系)这块内容的证明部分。

  教材内容的丰富,充分激发了学生的学习积极性。教材编排了一些游戏性的智力题,引导学生发现数学规律,探索数学世界的奥秘,采用阅读一些数学小故事和数学发展史,丰富学生的数学知识和对世界数学文化的了解,充分激发了学生继续学习数学和发展数学的积极性,把生活中的实物抽象成几何图形,让学生了解丰富变幻的图形世界,培养了学生抽象思维能力,特别侧重于培养学生认识事物,探索问题,解决实际的能力。让学生感兴趣且愿意学,并且接受知识是循序渐进的过程,随着数学知识的不断学习,也使学生亲身体会到了学习数学的重要意义:我们的生活中处处离不开数学,处处需要数学,学习数学也是非常有意思的。三提高教学科技含量,充分利用多媒体。

  几何图形可以直观地表示出来,人们认识图形的初级阶段中主要依靠形象思维。远古时期人们对几何图形的认识始于观察、测量、比较等直观实验手段,现代儿童认识几何图形亦如此,人们可以通过直观实验了解几何图形,发现其中的规律。然而,因为几何图形本身具有抽象性和一般性,一种几何概念可能包含无限多种不同的情形,例如有无数种形状不同的三角形。对一种几何概念所包含的一部分具体对象进行直观实验所得到的认识,一定适合其他情况验回答不了的问题。因此,一般地,研究图形的形状、大小和位置。

  培养逻辑推理能力,作了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续。在这套教科书的几何部分,七年级上、下两册要先后经历“说点儿理”“说理”“简单推理”几个层次,有意识地逐步强化关于推理的初步训练,主要做法是在问题的分析中强调求解过程所依据的道理,体现事出有因、言之有据的思维习惯。

  由于信息技术的发展与普及,直观实验手段在教学中日益增加,有些学校还建立了“数学实验室”,这些对于几何学的学习起到积极作用。随着教学研究的不断深入,直观实验会在启发诱导、化难为易、检验猜想等方面进一步大显身手。但是,直观实验终归是数学学习的辅助手段,数学毕竟不是实验科学,它不能象物理、化学、生物等学科那样最后通过实验来确定结论。实验几何只是学习几何学的前奏曲或第一乐章,后面的乐曲建立在理性思维基础上,逻辑推理是把演奏推向高潮的主要手段。

  四转变评价手段,让每个学生找到学习数学的自信。

  评价就其实质来讲,乃是一种监控机制。这种反馈监控机制包括"他律"与"自律"两个方面。所谓"他律"是以他人评价为基础的,"自律"是以自我评价为基础的。每个人素质生成都经历着一个从"他律"到"自律"的发展过程,经历着一个从学会评价他人到学会评价自己的发展过程。实施他人评价,完善素质发展的他人监控机制很有必要。每个人都要以他人为镜,从他人这面镜子中照见自我。但发展的成熟、素质的完善主要建立在自律的基础上,是以素质的自我评价、自我调节、自我教育为标志的。因此要改变单纯由教师评价的现状,提倡评价主体的多元化,把教师评价、同学评价、家长评价及学生的自评相结合。尤其要突出学生的自评,提高他们的自我认识、自我调节、自我评价的能力,增强反思意识,培养健康的心理。 注重数学与生活的联系,从学生认知规律和接受水平出发,这些理念贯彻到教材与课堂教学当中,很好地激发了学生学习数学的兴趣。学生们善于提出问题、敢于提出问题、解决问题的能力强,已经成为数学新课标下学生表现的一个标志。

  通过学习几何可以认识丰富多彩的几何图形,建立与发展空间观念,掌握必要的几何知识,培养运用这些知识认识世界与改造世界的能力。但是,这些并不是几何学的全部教育功能。从更深层次看,学习几何学的一个重要的作用是:以几何图形为载体,培养逻辑思维能力,提高理性思维水平。这正是自古希腊开始几何教学一直倍受重视的主要原因。

  从实际需要看,一个普通人一生中运用几何知识的时间、场合,要比他应该运用逻辑思维的时间、场合少得多。前者在特定的环境下发生,而后者经常地、普遍地出现,它的作用远比前者大得多。一个人学过几何后,如果不继续从事与数学关系密切的学习或工作,他一生中有可能很少甚至不会用到在某个几何定理,但是他肯定应该经常不断地在不同程度上使用逻辑推理来分析问题。当然,其他课程也可以培养学生的逻辑思维能力,学习几何学并不是实现此目的之唯一途径。但是,长期以来几何学被普遍认为是适合培养逻辑思维能力的绝好课程是客观事实。形成这种状况的原因主要有:几何学的历史悠久,学科体系成熟;几何学体系的逻辑性特点格外突出;几何学的研究对象是几何图形,结合几何图形,利用图形语言,在一定程度上可以降低认识和理解逻辑推理的难度。

  按照人的一般认知规律,认识几何图形的过程,也是从具体到抽象,从简单到复杂,从特殊到一般,从感性到理性的过程。根据教育心理学的规律可知,初中学生多处于认识方法发生升华的阶段,他们对事物的认识已不满足于表面的、孤立的层次,而有了向更深层次发展的要求,即向往“由此及彼,由表及里”的思维方式。从几何教学的内容看,学生们从小学开始已经通过直观实验这种主要方式学习了基础的图形知识,在他们的头脑中已经积累了一定的关于图形的感性认识,在初中阶段应该更深入地在“为什么”的层面上认识图形。显然,单纯的直观实验这种学习方式已经不适应继续深入学习的需要,因为这种方式难以真正从道理上对图形规律进行解释,而逻辑推理的方式才能担此重任。因此,从“实验几何”向“推理几何”的过渡成为初中几何教学必须面对的问题,培养逻辑推理能力成为初中几何教学必须实现的教学目标。

  认识几何图形既需要形象思维,又需要抽象思维,两者相辅相成。虽然我们强调几何教学中逻辑推理的重要性,但是并不排斥直观实验。直观实验是初级认识手段,逻辑推理是高级认识手段。“看一看”“量一量”“做一做”等直观实验活动在几何学习的初始阶段的重要性尤为突出,即使在推理几何阶段的学习中,直观实验也具有重要的辅助作用,人们常借助某些直观特例来发现一般规律、探寻证明思路、理解抽象内容,有时直观实验与逻辑推理是交替进行的。

  让学生享受数学的有趣:可利用愉快的游戏、生动的故事、激烈的竞赛、入境的表演、热情的掌声等创设出一种愉悦的学习情境,诱发学生的学习情趣;让学生时常感受到“数学真奇妙!”,从而产生“我也想试一试!”的心理。

  让学生享受数学的有用:借助生活情境,让学生寻找有关的数学问题,使学生体会到我们的生活中蕴涵着丰富的数学问题,感受数学学习在生活中的作用。

  让学生享受数学的精彩:创设一切机会让学生学会思考,乐于思考、善于思考,只有这样,数学才能展示其精彩的一面;在教学中可有意识地安排一些问题让学生多途径思考,发现答案有多种多样;让他们体味出更多的精彩!享受数学的成功:“教育教学的本质就是帮助学生成功。”一次成功的机会却可以十倍地增强学生的信心;因此,课堂上教师应毫不吝啬自己鼓励的眼神、赞许的话语,批改作业时尽量少一些令人生厌的“×”,可以写上“再算算”。

  3、圆周角定理的教学反思

  本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的有关知识,了解了直角三角形的概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的应用与理解,勾股定理的应用的教学反思(郑茹)。本节第一课时安排了对勾股定理的观察、计算、猜想、证明及简单应用的过程;第二课时是通过例题分析与讲解,让学生感受勾股定理在实际生活中的应用,通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决问题的意识和应用能力。

  针对本班学生的特点,学生知识水平、学习能力的差距,本节课安排了如下几个环节:

  一、复习引入

  对上节课勾股定理内容进行回顾,强调易错点。由于学生的注意力集中时间较短,学生知识水平低,引入内容简短明了,花费时间短。

  二、例题讲解,巩固练习,总结数学思想方法

  活动一:用对媒体展示搬运工搬木板的问题,让学生以小组交流合作,如何将木板运进门内?需要知道们的宽、高,还是其他的条件?学生展示交流结果,之后教师引导学生书写板书,教学反思《勾股定理的应用的教学反思(郑茹)》。整个活动以学生为主体,教师及时的引导和强调。

  活动二:解决例二梯子滑落的问题。学生自主讨论解决问题,书写过程,之后投影学生书写过程,教师与学生一起合作修改解题过程。

  活动三:学生讨论总结如何将实际生活中的问题转化为数学问题,然后利用勾股定理解决问题。利用勾股定理的前提是什么?如何作辅助线构造这一前提条件?在数学活动中发展了学生的探究意识和合作交流的习惯;体会勾股定理的应用价值,让学生体会到数学来源于生活,又应用到生活中去,在学习的过程中体会获得成功的喜悦,提高了学生学习数学的兴趣和信心。

  三、巩固练习,熟练新知

  通过测量旗杆活动,发展学生的探究意识,培养学生动手操作的能力,增加学生应用数学知识解决实际问题的经验和感受。

  在教学设计的实施中,也存在着一些问题:

  1.由于本班学生能力的差距,本想着通过学生帮带活动,使学困生充分参与课堂,但在学生合作交流是由于学习能力强的学生,对问题的分析解决所用时间短,而在整个环节设计中转接的快,未给学困生充分的时间,导致部分学生未能真正的参与到课堂中来。

  2.课堂上质疑追问要起到好处,不要增加学生展示的难度,影响展示进程出现中断或偏离主题的现象。

  3.对学生课堂展示的评价方式应体现生评生,师评生,及评价的针对性和及时性。

  4、圆周角教案

  教学目标:

  (1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;

  (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;

  (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法。

  教学重点:

  圆周角的概念和圆周角定理

  教学难点:

  圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想。

  教学活动设计:(在教师指导下完成)

  (一)圆周角的概念

  1、复习提问:

  (1)什么是圆心角?

  答:顶点在圆心的角叫圆心角。

  (2)圆心角的度数定理是什么?

  答:圆心角的度数等于它所对弧的度数。(如右图)

  2、引题圆周角:

  如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周角。(如右图)(演示图形,提出圆周角的定义)

  定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角

  3、概念辨析:

  教材P93中1题:判断下列各图形中的是不是圆周角,并说明理由。

  学生归纳:一个角是圆周角的条件:①顶点在圆上;②两边都和圆相交。

  (二)圆周角的定理

  1、提出圆周角的度数问题

  问题:圆周角的度数与什么有关系?

  经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系。引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部。

  (在教师引导下完成)

  (1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半。

  提出必须用严格的数学方法去证明。

  证明:(圆心在圆周角上)

  (2)其它情况,圆周角与相应圆心角的关系:

  当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论。

  证明:作出过C的直径(略)

  圆周角定理:一条弧所对的

  周角等于它所对圆心角的一半。

  说明:这个定理的证明我们分成三种情况。这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想。(对A层学生渗透完全归纳法)

  (三)定理的应用

  1、例题:如图OA、OB、OC都是圆O的半径,∠AOB=2∠BOC。

  求证:∠ACB=2∠BAC

  让学生自主分析、解得,教师规范推理过程。

  说明:①推理要严密;②符号“”应用要严格,教师要讲清。

  2、巩固练习:

  (1)如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB的度数?

  (2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?

  说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个。

  (四)总结

  知识:(1)圆周角定义及其两个特征;(2)圆周角定理的内容。

  思想方法:一种方法和一种思想:

  在证明中,运用了数学中的分类方法和“化归”思想。分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题。

  (五)作业教材P100中习题A组6.7.8

  5、圆周角教案

  教材分析

  1本节课是在圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角性质的探索。

  2.圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,在对圆与其他平面图形的研究中起着桥梁和纽带的作用。

  学情分析

  九年级的学生虽然已具备一定的说理能力,但逻辑推理能力仍不强,根据数学的认知规律,数学思想的学习不可能“一步到位”,应当逐步递进、螺旋上升。 在具体的问题情境下,引导学生采用动手实践、自主探究、合作交流的学习方法进行学习,充分发挥其主体的积极作用,使学生在观察、实践、问题转化等数学活动中充分体验探索的快乐,发挥潜能,使知识和能力得到内化,体现“主动获取,落实双基,发展能力”的原则。

  教学目标

  (1)知识目标:

  1、理解圆周角的概念。

  2、经历探索圆周角与它所对的弧的关系的过程,了解并证明圆周角定理及其推论。

  3、有机渗透“由特殊到一般”、“分类”、“化归”等数学思想方法。

  (2)能力目标:

  引导学生从形象思维向理性思维过渡,有意识地强化学生的推理能力,培养学生的实践能力与创新能力,提高数学素养。

  (3)情感、态度与价值观的目标:

  1、创设生活情境激发学生对数学的好奇心、求知欲,营造“民主”“和谐”的课堂氛围,让学生在愉快的学习中不断获得成功的体验。

  2、培养学生以严谨求实的态度思考数学。

  教学重点和难点

  探索并证明圆周角与它所对的弧的关系是本课时的重点。

  用分类、化归思想合情推理验证“圆周角与它所对的弧的关系”是本课时的难点。

  6、圆周角教案

  教学任务分析

  教学目标

  知识技能

  1.了解圆周角与圆心角的关系。

  2.掌握圆周角的性质和直径所对圆周角的特征。

  3.能运用圆周角的性质解决问题。

  数学思考

  1.通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力。

  2.通过观察图形,提高学生的识图能力。

  3.通过引导学生添加合理的辅助线,培养学生的创造力。

  解决问题

  在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想,转化的数学思想解决问题

  情感态度

  引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

  重点

  圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征。

  难点

  发现并论证圆周角定理。

  教学流程安排

  活动流程图

  活动内容和目的

  活动1 创设情景,提出问题

  活动2 探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系

  活动3 发现并证明圆周角定理

  活动4 圆周角定理应用

  活动5 小结,布置作业

  从实例提出问题,给出圆周角的定义。

  通过实例观察、发现圆周角的特点,利用度量工具,探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系。

  探索圆心与圆周角的位置关系,利用分类讨论的数学思想证明圆周角定理。

  反馈练习,加深对圆周角定理的理解和应用。

  回顾梳理,从知识和能力方面总结本节课所学到的东西。

  教学过程设计

  问题与情境

  师生行为

  设计意图

  [活动1 ]

  问题

  演示课件或图片(教科书图24.1-11):

  (1)如图:同学甲站在圆心的位置,同学乙站在正对着玻璃窗的靠墙的位置,他们的视角(和)有什么关系?

  (2)如果同学丙、丁分别站在其他靠墙的位置和,他们的视角(和)和同学乙的视角相同吗?

  教师演示课件或图片:展示一个圆柱形的海洋馆。

  教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗观看窗内的海洋动物。

  教师出示海洋馆的横截面示意图,提出问题。

  教师结合示意图,给出圆周角的定义。利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧()所对的圆心角()与圆周角()、同弧所对的圆周角(、、等)之间的大小关系。教师引导学生进行探究。

  本次活动中,教师应当重点关注:

  (1)问题的提出是否引起了学生的兴趣;

  (2)学生是否理解了示意图;

  (3)学生是否理解了圆周角的定义。

  (4)学生是否清楚了要研究的数学问题。

  从生活中的实际问题入手,使学生认识到数学总是与现实问题密不可分,人们的需要产生了数学。

  将实际问题数学化,让学生从一些简单的实例中,不断体会从现实世界中寻找数学模型、建立数学关系的方法。

  引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

  [活动2]

  问题

  (1)同弧(弧AB)所对的圆心角∠AOB与圆周角∠ACB的大小关系是怎样的?

  (2)同弧(弧AB)所对的圆周角∠ACB与圆周角∠ADB的大小关系是怎样的?

  教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论。

  由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半。

  教师再利用几何画板从动态的角度进行演示,验证学生的发现。教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的`关系有无变化:

  (1)拖动圆周角的顶点使其在圆周上运动;

  (2)改变圆心角的度数;3.改变圆的半径大小。

  本次活动中,教师应当重点关注:

  (1)学生是否积极参与活动;

  (2)学生是否度量准确,观察、发现的结论是否正确。

  活动2的设计是为 引导学生发现。让学生亲自动手,利用度量工具(如半圆仪、几何画板)进行实验、探究,得出结论。激发学生的求知欲望,调动学生学习的积极性。教师利用几何画板从动态的角度进行演示,目的是用运动变化的观点来研究问题,从运动变化的过程中寻找不变的关系。

  [活动3]

  问题

  (1)在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况?

  (2)当圆心在圆周角的一边上时,如何证明活动2中所发现的结论?

  (3)另外两种情况如何证明,可否转化成第一种情况呢?

  教师引导学生,采取小组合作的学习方式,前后四人一组,分组讨论。

  教师巡视,请学生回答问题。回答不全面时,请其他同学给予补充。

  教师演示圆心与圆周角的三种位置关系。

  本次活动中,教师应当重点关注:

  (1)学生是否会与人合作,并能与他人交流思维的过程和结果。

  (2)学生能否发现圆心与圆周角的三种位置关系。学生是否积极参与活动。

  教师引导学生从特殊情况入手证明所发现的结论。

  学生写出已知、求证,完成证明。

  学生采取小组合作的学习方式进行探索发现,教师观察指导小组活动。启发并引导学生,通过添加辅助线,将问题进行转化。教师讲评学生的证明,板书圆周角定理。

  本次活动中,教师应当重点关注:

  (1)学生是否会想到添加辅助线,将另外两种情况进行转化

  (2)学生添加辅助线的合理性。

  (3)学生是否会利用问题2的结论进行证明。

  数学教学是在教师的引导下,进行的再创造、再发现的教学。通过数学活动,教给学生一种科学研究的方法。学会发现问题,提出问题,分析问题,并能解决问题。活动3的安排是让学生对所发现的结论进行证明。培养学生严谨的治学态度。

  问题1的设计是让学生通过合作探索,学会运用分类讨论的数学思想研究问题。培养学生思维的深刻性。

  问题2、3的提出是让学生学会一种分析问题、解决问题的方式方法:从特殊到一般。学会运用化归思想将问题转化。并启发培养学生创造性的解决问题

  [活动4]

  问题

  (1)半圆(或直径)所对的圆周角是多少度?

  (2)90°的圆周角所对的弦是什么?

  (3)在半径不等的圆中,相等的两个圆周角所对的弧相等吗?

  (4)在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?

  (5)如图,点、、、在同一个圆上,四边形的对角线把4个内角分成8个角,这些角中哪些是相等的角?

  (6)如图, ⊙O的直径AB 为10cm,弦AC 为6cm, ∠ACB的平分线交⊙O于D, 求BC、AD、BD的长。

  学生独立思考,回答问题,教师讲评。

  对于问题(1),教师应重点关注学生是否能由半圆(或直径)所对的圆心角的度数得出圆周角的度数。

  对于问题(2),教师应重点关注学生是否能由90°的圆周角推出同弧所对的圆心角的度数是180°,从而得出所对的弦是直径。

  对于问题(3),教师应重点关注学生能否得出正确的结论,并能说明理由。教师提醒学生:在使用圆周角定理时一定要注意定理的条件。

  对于问题(4),教师应重点关注学生能否利用定理得出与圆周角对同弧的圆心角相等,再由圆心角相等得到它们所对的弧相等。

  对于问题(5),教师应重点关注学生是否准确找出同弧上所对的圆周角。

  对于问题(6),教师应重点关注

  (1)学生是否能由已知条件得出直角三角形ABC、ABD;

  (2)学生能否将要求的线段放到三角形里求解。

  (3)学生能否利用问题4的结论得出弧AD与弧BD相等,进而推出AD=BD。

  活动4的设计是圆周角定理的应用。通过4个问题层层深入,考察学生对定理的理解和应用。问题1、2是定理的推论,也是定理在特殊条件下得出的结论。问题3的设计目的是通过举反例,让学生明确定理使用的条件。问题4是定理的引申,将本节课的内容与所学过的知识紧密的结合起来,使学生很好地进行知识的迁移。问题5、6是定理的应用。即时反馈有助于记忆,让学生在练习中加深对本节知识的理解。教师通过学生练习,及时发现问题,评价教学效果。

  [活动5]

  小结

  通过本节课的学习你有哪些收获?

  布置作业。

  (1)阅读作业:阅读教科书P90—93的内容。

  (2)教科书P94 习题24.1第2、3、4、5题。

  教师带领学生从知识、方法、数学思想等方面小结本节课所学内容。

  教师关注不同层次的学生对所学内容的理解和掌握。

  教师布置作业。

  通过小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感。

  增加阅读作业目的是让学生养成看书的习惯,并通过看书加深对所学内容的理解。

  课后巩固作业是对课堂所学知识的检验,是让学生巩固、提高、发展。

  7、圆周角教案

  教学目标:

  (1)掌握圆周角定理的三个推论,并会熟练运用这些知识进行有关的计算和证明;

  (2)进一步培养学生观察、分析及解决问题的能力及逻辑推理能力;

  (3)培养添加辅助线的能力和思维的广阔性。

  教学重点:

  圆周角定理的三个推论的应用。

  教学难点:

  三个推论的灵活应用以及辅助线的添加。

  教学活动设计:

  (一)创设学习情境

  问题1:画一个圆,以B、C为弧的端点能画多少个圆周角?它们有什么关系?

  问题2:在⊙O中,若=,能否得到∠C=∠G呢?根据什么?反过来,若土∠C=∠G,是否得到=呢?

  (二)分析、研究、交流、归纳

  让学生分析、研究,并充分交流。

  注意:①问题解决,只要构造圆心角进行过渡即可;②若=,则∠C=∠G;但反之不成立。

  老师组织学生归纳:

  推论1:同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等。

  重视:同弧说明是“同一个圆”;等弧说明是“在同圆或等圆中”。

  问题:“同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识)

  问题3:(1)一个特殊的圆弧——半圆,它所对的圆周角是什么样的角?

  (2)如果一条弧所对的圆周角是90°,那么这条弧所对的圆心角是什么样的角?

  学生通过以上两个问题的解决,在教师引导下得推论2:

  推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦直径。

  指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练掌握。

  启发学生根据推论2推出推论3:

  推论3:如果三角形一边上的中线等于这边的一半,那么这个三角是直角三角形。

  指出:推论3是下面定理的逆定理:在直角三角形中,斜边上的中线等于斜边的一半。

  (三)应用、反思

  例1、如图,AD是△ABC的高,AE是△ABC的外接圆直径。

  求证:AB·AC=AE·AD。

  对A层同学,让学生自主地分析问题、解决问题,进行生生交流,师生交流;其他层次的学生在教师引导下完成。

  交流:①分析解题思路;②作辅助线的方法;③解题推理过程(要规范)。

  解(略)

  教师引导学生思考:(1)此题还有其它证法吗?(2)比较以上证法的优缺点。

  指出:在解圆的有关问题时,常常需要添加辅助线,构成直径上的圆周角,以便利用直径上的圆周角是直角的性质。

  变式练习1:如图,△ABC内接于⊙O,∠1=∠2.

  求证:AB·AC=AE·AD。

  变式练习2:如图,已知△ABC内接于⊙O,弦AE平分

  ∠BAC交BC于D。

  求证:AB·AC=AE·AD。

  指出:这组题目比较典型,圆和相似三角形有密切联系,证明圆中某些线段成比例,常常需要找出或通过辅助线构造出相似三角形。

  例2:如图,已知在⊙O中,直径AB为10厘米,弦AC为6厘米,∠ACB的平分线交⊙O于D;

  求BC,AD和BD的长。

  解:(略)

  说明:充分利用直径所对的圆周角为直角,解直角三角形。

  练习:教材P96中1、2

  (四)小结(指导学生共同小结)

  知识:本节课主要学习了圆周角定理的三个推论。这三个推论各具特色,作用各异,在今后的学习中应用十分广泛,应熟练掌握。

  能力:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角或构成相似三角形,这种基本技能技巧一定要掌握。

  (五)作业

  教材P100.习题A组9、10、12、13、14题;另外A层同学做P102B组3.4题。

  探究活动

  我们已经学习了“圆周角的度数等于它所对的弧的度数的一半”,但当角的顶点在圆外(如图①称圆外角)或在圆内(如图②称圆内角),它的度数又和什么有关呢?请探究。

  提示:(1)连结BC,可得∠E=(的度数—的度数)

  (2)延长AE、CE分别交圆于B、D,则∠B=的度数,

  ∠C=的度数,

  ∴∠AEC=∠B+∠C=(的度数+的度数)。

  8、圆周角教案

  教学任务分析

  教学目标

  知识技能

  1.了解圆周角与圆心角的关系。

  2.掌握圆周角的性质和直径所对圆周角的特征。

  3.能运用圆周角的性质解决问题。

  数学思考

  1.通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力。

  2.通过观察图形,提高学生的识图能力。

  3.通过引导学生添加合理的辅助线,培养学生的创造力。

  解决问题

  在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想,转化的数学思想解决问题

  情感态度

  引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

  重点

  圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征。

  难点

  发现并论证圆周角定理。

  教学流程安排

  活动流程图

  活动内容和目的

  活动1 创设情景,提出问题

  活动2 探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系

  活动3 发现并证明圆周角定理

  活动4 圆周角定理应用

  活动5 小结,布置作业

  从实例提出问题,给出圆周角的定义。

  通过实例观察、发现圆周角的特点,利用度量工具,探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系。

  探索圆心与圆周角的位置关系,利用分类讨论的数学思想证明圆周角定理。

  反馈练习,加深对圆周角定理的理解和应用。

  回顾梳理,从知识和能力方面总结本节课所学到的东西。

  教学过程设计

  问题与情境

  师生行为

  设计意图

  [活动1 ]

  问题

  演示课件或图片(教科书图24.1-11):

  (1)如图:同学甲站在圆心的位置,同学乙站在正对着玻璃窗的靠墙的位置,他们的视角(和)有什么关系?

  (2)如果同学丙、丁分别站在其他靠墙的位置和,他们的视角(和)和同学乙的视角相同吗?

  教师演示课件或图片:展示一个圆柱形的海洋馆。

  教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗观看窗内的海洋动物。

  教师出示海洋馆的横截面示意图,提出问题。

  教师结合示意图,给出圆周角的定义。利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧()所对的圆心角()与圆周角()、同弧所对的圆周角(、、等)之间的大小关系。教师引导学生进行探究。

  本次活动中,教师应当重点关注:

  (1)问题的提出是否引起了学生的兴趣;

  (2)学生是否理解了示意图;

  (3)学生是否理解了圆周角的定义。

  (4)学生是否清楚了要研究的数学问题。

  从生活中的实际问题入手,使学生认识到数学总是与现实问题密不可分,人们的需要产生了数学。

  将实际问题数学化,让学生从一些简单的实例中,不断体会从现实世界中寻找数学模型、建立数学关系的方法。

  引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

  [活动2]

  问题

  (1)同弧(弧AB)所对的圆心角∠AOB与圆周角∠ACB的大小关系是怎样的?

  (2)同弧(弧AB)所对的圆周角∠ACB与圆周角∠ADB的大小关系是怎样的?

  教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论。

  由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半。

  教师再利用几何画板从动态的角度进行演示,验证学生的发现。教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的关系有无变化:

  (1)拖动圆周角的顶点使其在圆周上运动;

  (2)改变圆心角的度数;3.改变圆的半径大小。

  本次活动中,教师应当重点关注:

  (1)学生是否积极参与活动;

  (2)学生是否度量准确,观察、发现的结论是否正确。

  活动2的设计是为 引导学生发现。让学生亲自动手,利用度量工具(如半圆仪、几何画板)进行实验、探究,得出结论。激发学生的求知欲望,调动学生学习的积极性。教师利用几何画板从动态的角度进行演示,目的是用运动变化的观点来研究问题,从运动变化的过程中寻找不变的关系。

  [活动3]

  问题

  (1)在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况?

  (2)当圆心在圆周角的一边上时,如何证明活动2中所发现的结论?

  (3)另外两种情况如何证明,可否转化成第一种情况呢?

  教师引导学生,采取小组合作的学习方式,前后四人一组,分组讨论。

  教师巡视,请学生回答问题。回答不全面时,请其他同学给予补充。

  教师演示圆心与圆周角的三种位置关系。

  本次活动中,教师应当重点关注:

  (1)学生是否会与人合作,并能与他人交流思维的过程和结果。

  (2)学生能否发现圆心与圆周角的三种位置关系。学生是否积极参与活动。

  教师引导学生从特殊情况入手证明所发现的结论。

  学生写出已知、求证,完成证明。

  学生采取小组合作的学习方式进行探索发现,教师观察指导小组活动。启发并引导学生,通过添加辅助线,将问题进行转化。教师讲评学生的证明,板书圆周角定理。

  本次活动中,教师应当重点关注:

  (1)学生是否会想到添加辅助线,将另外两种情况进行转化

  (2)学生添加辅助线的合理性。

  (3)学生是否会利用问题2的结论进行证明。

  数学教学是在教师的引导下,进行的再创造、再发现的教学。通过数学活动,教给学生一种科学研究的方法。学会发现问题,提出问题,分析问题,并能解决问题。活动3的安排是让学生对所发现的结论进行证明。培养学生严谨的治学态度。

  问题1的设计是让学生通过合作探索,学会运用分类讨论的数学思想研究问题。培养学生思维的深刻性。

  问题2、3的提出是让学生学会一种分析问题、解决问题的方式方法:从特殊到一般。学会运用化归思想将问题转化。并启发培养学生创造性的解决问题

  [活动4]

  问题

  (1)半圆(或直径)所对的圆周角是多少度?

  (2)90°的圆周角所对的弦是什么?

  (3)在半径不等的圆中,相等的两个圆周角所对的弧相等吗?

  (4)在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?

  (5)如图,点、、、在同一个圆上,四边形的对角线把4个内角分成8个角,这些角中哪些是相等的角?

  (6)如图, ⊙O的直径AB 为10cm,弦AC 为6cm, ∠ACB的平分线交⊙O于D, 求BC、AD、BD的长。

  学生独立思考,回答问题,教师讲评。

  对于问题(1),教师应重点关注学生是否能由半圆(或直径)所对的圆心角的度数得出圆周角的度数。

  对于问题(2),教师应重点关注学生是否能由90°的圆周角推出同弧所对的圆心角的度数是180°,从而得出所对的弦是直径。

  对于问题(3),教师应重点关注学生能否得出正确的结论,并能说明理由。教师提醒学生:在使用圆周角定理时一定要注意定理的条件。

  对于问题(4),教师应重点关注学生能否利用定理得出与圆周角对同弧的圆心角相等,再由圆心角相等得到它们所对的弧相等。

  对于问题(5),教师应重点关注学生是否准确找出同弧上所对的圆周角。

  对于问题(6),教师应重点关注

  (1)学生是否能由已知条件得出直角三角形ABC、ABD;

  (2)学生能否将要求的线段放到三角形里求解。

  (3)学生能否利用问题4的结论得出弧AD与弧BD相等,进而推出AD=BD。

  活动4的设计是圆周角定理的应用。通过4个问题层层深入,考察学生对定理的理解和应用。问题1、2是定理的推论,也是定理在特殊条件下得出的结论。问题3的设计目的是通过举反例,让学生明确定理使用的条件。问题4是定理的引申,将本节课的内容与所学过的知识紧密的结合起来,使学生很好地进行知识的迁移。问题5、6是定理的应用。即时反馈有助于记忆,让学生在练习中加深对本节知识的理解。教师通过学生练习,及时发现问题,评价教学效果。

  [活动5]

  小结

  通过本节课的学习你有哪些收获?

  布置作业。

  (1)阅读作业:阅读教科书P90—93的内容。

  (2)教科书P94 习题24.1第2、3、4、5题。

  教师带领学生从知识、方法、数学思想等方面小结本节课所学内容。

  教师关注不同层次的学生对所学内容的理解和掌握。

  教师布置作业。

  通过小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的'知识与以前所学的知识进行紧密联结,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感。

  增加阅读作业目的是让学生养成看书的习惯,并通过看书加深对所学内容的理解。

  课后巩固作业是对课堂所学知识的检验,是让学生巩固、提高、发展。

  9、圆周角教案

  教学任务分析

  教学目标

  知识技能

  1.了解圆周角与圆心角的关系。

  2.掌握圆周角的性质和直径所对圆周角的特征。

  3.能运用圆周角的性质解决问题。

  数学思考

  1.通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力。

  2.通过观察图形,提高学生的识图能力。

  3.通过引导学生添加合理的辅助线,培养学生的创造力。

  解决问题

  在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想,转化的数学思想解决问题

  情感态度

  引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

  重点

  圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征。

  难点

  发现并论证圆周角定理。

  教学流程安排

  活动流程图

  活动内容和目的

  活动1 创设情景,提出问题

  活动2 探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系

  活动3 发现并证明圆周角定理

  活动4 圆周角定理应用

  活动5 小结,布置作业

  从实例提出问题,给出圆周角的定义。

  通过实例观察、发现圆周角的特点,利用度量工具,探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系。

  探索圆心与圆周角的位置关系,利用分类讨论的数学思想证明圆周角定理。

  反馈练习,加深对圆周角定理的理解和应用。

  回顾梳理,从知识和能力方面总结本节课所学到的东西。

  教学过程设计

  问题与情境

  师生行为

  设计意图

  [活动1 ]

  问题

  演示课件或图片(教科书图24.1-11):

  (1)如图:同学甲站在圆心的位置,同学乙站在正对着玻璃窗的靠墙的位置,他们的视角(和)有什么关系?

  (2)如果同学丙、丁分别站在其他靠墙的位置和,他们的视角(和)和同学乙的视角相同吗?

  教师演示课件或图片:展示一个圆柱形的海洋馆。

  教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗观看窗内的海洋动物。

  教师出示海洋馆的横截面示意图,提出问题。

  教师结合示意图,给出圆周角的定义。利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧()所对的圆心角()与圆周角()、同弧所对的圆周角(、、等)之间的大小关系。教师引导学生进行探究。

  本次活动中,教师应当重点关注:

  (1)问题的提出是否引起了学生的兴趣;

  (2)学生是否理解了示意图;

  (3)学生是否理解了圆周角的定义。

  (4)学生是否清楚了要研究的数学问题。

  从生活中的实际问题入手,使学生认识到数学总是与现实问题密不可分,人们的需要产生了数学。

  将实际问题数学化,让学生从一些简单的实例中,不断体会从现实世界中寻找数学模型、建立数学关系的方法。

  引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

  [活动2]

  问题

  (1)同弧(弧AB)所对的圆心角∠AOB与圆周角∠ACB的大小关系是怎样的?

  (2)同弧(弧AB)所对的圆周角∠ACB与圆周角∠ADB的大小关系是怎样的?

  教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论。

  由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半。

  教师再利用几何画板从动态的角度进行演示,验证学生的发现。教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的关系有无变化:

  (1)拖动圆周角的顶点使其在圆周上运动;

  (2)改变圆心角的度数;3.改变圆的半径大小。

  本次活动中,教师应当重点关注:

  (1)学生是否积极参与活动;

  (2)学生是否度量准确,观察、发现的结论是否正确。

  活动2的设计是为 引导学生发现。让学生亲自动手,利用度量工具(如半圆仪、几何画板)进行实验、探究,得出结论。激发学生的求知欲望,调动学生学习的积极性。教师利用几何画板从动态的角度进行演示,目的是用运动变化的观点来研究问题,从运动变化的过程中寻找不变的关系。

  [活动3]

  问题

  (1)在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况?

  (2)当圆心在圆周角的一边上时,如何证明活动2中所发现的结论?

  (3)另外两种情况如何证明,可否转化成第一种情况呢?

  教师引导学生,采取小组合作的学习方式,前后四人一组,分组讨论。

  教师巡视,请学生回答问题。回答不全面时,请其他同学给予补充。

  教师演示圆心与圆周角的三种位置关系。

  本次活动中,教师应当重点关注:

  (1)学生是否会与人合作,并能与他人交流思维的过程和结果。

  (2)学生能否发现圆心与圆周角的三种位置关系。学生是否积极参与活动。

  教师引导学生从特殊情况入手证明所发现的结论。

  学生写出已知、求证,完成证明。

  学生采取小组合作的学习方式进行探索发现,教师观察指导小组活动。启发并引导学生,通过添加辅助线,将问题进行转化。教师讲评学生的证明,板书圆周角定理。

  本次活动中,教师应当重点关注:

  (1)学生是否会想到添加辅助线,将另外两种情况进行转化

  (2)学生添加辅助线的合理性。

  (3)学生是否会利用问题2的结论进行证明。

  数学教学是在教师的引导下,进行的再创造、再发现的教学。通过数学活动,教给学生一种科学研究的方法。学会发现问题,提出问题,分析问题,并能解决问题。活动3的安排是让学生对所发现的结论进行证明。培养学生严谨的治学态度。

  问题1的设计是让学生通过合作探索,学会运用分类讨论的数学思想研究问题。培养学生思维的深刻性。

  问题2、3的`提出是让学生学会一种分析问题、解决问题的方式方法:从特殊到一般。学会运用化归思想将问题转化。并启发培养学生创造性的解决问题

  [活动4]

  问题

  (1)半圆(或直径)所对的圆周角是多少度?

  (2)90°的圆周角所对的弦是什么?

  (3)在半径不等的圆中,相等的两个圆周角所对的弧相等吗?

  (4)在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?

  (5)如图,点、、、在同一个圆上,四边形的对角线把4个内角分成8个角,这些角中哪些是相等的角?

  (6)如图, ⊙O的直径AB 为10cm,弦AC 为6cm, ∠ACB的平分线交⊙O于D, 求BC、AD、BD的长。

  学生独立思考,回答问题,教师讲评。

  对于问题(1),教师应重点关注学生是否能由半圆(或直径)所对的圆心角的度数得出圆周角的度数。

  对于问题(2),教师应重点关注学生是否能由90°的圆周角推出同弧所对的圆心角的度数是180°,从而得出所对的弦是直径。

  对于问题(3),教师应重点关注学生能否得出正确的结论,并能说明理由。教师提醒学生:在使用圆周角定理时一定要注意定理的条件。

  对于问题(4),教师应重点关注学生能否利用定理得出与圆周角对同弧的圆心角相等,再由圆心角相等得到它们所对的弧相等。

  对于问题(5),教师应重点关注学生是否准确找出同弧上所对的圆周角。

  对于问题(6),教师应重点关注

  (1)学生是否能由已知条件得出直角三角形ABC、ABD;

  (2)学生能否将要求的线段放到三角形里求解。

  (3)学生能否利用问题4的结论得出弧AD与弧BD相等,进而推出AD=BD。

  活动4的设计是圆周角定理的应用。通过4个问题层层深入,考察学生对定理的理解和应用。问题1、2是定理的推论,也是定理在特殊条件下得出的结论。问题3的设计目的是通过举反例,让学生明确定理使用的条件。问题4是定理的引申,将本节课的内容与所学过的知识紧密的结合起来,使学生很好地进行知识的迁移。问题5、6是定理的应用。即时反馈有助于记忆,让学生在练习中加深对本节知识的理解。教师通过学生练习,及时发现问题,评价教学效果。

  [活动5]

  小结

  通过本节课的学习你有哪些收获?

  布置作业。

  (1)阅读作业:阅读教科书P90—93的内容。

  (2)教科书P94 习题24.1第2、3、4、5题。

  教师带领学生从知识、方法、数学思想等方面小结本节课所学内容。

  教师关注不同层次的学生对所学内容的理解和掌握。

  教师布置作业。

  通过小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感。

  增加阅读作业目的是让学生养成看书的习惯,并通过看书加深对所学内容的理解。

  课后巩固作业是对课堂所学知识的检验,是让学生巩固、提高、发展。

  10、圆周角教案

  教材依据

  圆周角是新课标人教版九年级数学上册第二十四章第一节圆的有关性质的重要内容,本节内容依据新人教版九年级《课程标准》和《教师教学用书》及《初中数学新教材详解》。

  设计思想

  本节课是在学习了圆心角的定义、性质定理和推论的基础上,由生活实例引出圆周角,类比圆心角认识圆周角,类比圆心角的性质探究圆周角定理,精选例题及习题对本节内容进行迁移应用。

  在教学过程中本着“以人为本,让课堂变为学堂,把时间和空间更多地留给学生”为原则,注重学生的实践活动,通过让学生作图、度量、分析、猜想、验证得出结论,教学过程中充分利用学生已有的认知水平,由浅入深、逐层递进,并能适时地应用直观教具引导学生运用分类讨论及转化的数学思想对圆周角定理进行证明,化解本节课的难点。这样学生易于接受新知识,也能很快地理解并掌握圆周角定理的内容,同时给学生自主探索留有很大空间,让学生在实践探究、合作交流活动中,亲身体验应用数学的乐趣和成功的喜悦,发展学生的思维,培养学生的多种学习能力。

  教学目标

  1.知识与技能

  (1)理解圆周角的概念,掌握圆周角定理,并运用它进行简单的论证和计算。

  (2)经历圆周角定理的证明,使学生初步学会运用分类讨论的数学思想和转化的数学思想解决问题。

  2.过程与方法

  采用“活动与探究”的学习方法,由感性到理性、由简单到复杂、由特殊到一般的思维过程研究新知识,引导学生理解知识的发生发展过程,并使学生能应用所学知识解决简单的实际问题。

  3.情感、态度与价值观

  通过学生探索圆周角定理,自主学习、合作交流的学习过程,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习数学的自信心。

  教学重点

  圆周角的概念、圆周角定理及应用。

  教学难点

  圆周角定理的探究过程及定理的应用。

  教学准备

  学生:圆规、量角器、尺子

  教师:多媒体课件、活动教具

  教学过程

  一、 创设情景,引入新课

  大屏幕显示学生熟悉的画面(足球射门游戏)

  足球场有句顺口溜:“冲向球门跑,越近就越好;歪着球门跑,射点要选好。”其中蕴藏了一定的数学道理,学习了本节课,我们就可以解释其中的道理。

  二、实践探索,揭示新知

  (一)圆周角的概念

  在射门游戏中,球员射中球门的难易程度与他所处的位置B对球门AC的张角∠ABC有关。(教师出示图片,提出问题)

  图中∠ABC是圆心角吗?什么是圆心角?图中∠ABC有什么特点?

  (学生通过与圆心角的类比、分析、观察得出∠ABC的特点,进而概括出圆周角的概念,教师引导并板书)

  定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角。

  概念辨析:

  判断下列各图形中的角是不是圆周角,并说明理由。(图略)

  (通过概念辨析,让学生理解圆周角的定义,提高学生的语言表达能力,教师强调知识要点)

  强调:圆周角必须具备的两个条件:①顶点在圆上;②两边都与圆相交。

  (二)圆周角定理

  1.提出问题,引发思考

  类比圆心角的结论:同弧或等弧所对的圆心角相等。提出本节课研究的问题:同弧或等弧所对的圆周角相等吗?为了搞清这个问题,我们可以先研究:同弧所对的圆心角和圆周角的关系。

  2.活动与探究

  画一个圆心角,然后再画同弧所对的圆周角。你能画多少个圆周角? 用量角器量一量这些圆周角及圆心角的度数,你有何发现呢?

  (教师提出问题,学生作图、度量、分析、归纳出发现的结论。)

  结论:(1)同一条弧所对的圆周角有无数个,同弧所对的任意一个圆周角都相等。

  (2)同一条弧所对的圆周角等于它所对的圆心角的一半。

  由上述操作可以看出:同一条弧所对的任意一个圆周角都等于该条弧所对的圆心角的一半。

  (学生通过实践探究,讨论概括出结论,教师点评)

  3.推理与论证

  (1)教师演示活动教具,一条弧所对的圆心角只有一个,所对的圆周角有无数个,我们没有办法一一论证,提出本节课研究方法:分类讨论法。

  (教师演示,引导学生观察圆心与圆周角的位置关系,学生观察、小组交流,最后得出结论,教师出示圆心和圆周角的三种位置关系图片)

  (2)分类讨论,证明结论 ① 当圆心在圆周角的一条边上时,如何证明?(从特殊情况入手,学生通过观察、分析、讨论,证明所发现的结论,教师鼓励学生看清此数学模型。)

  ②另外两种情况如何证明,可否转化成第一种情况呢?

  (学生采取小组合作的学习方式进行探索发现,教师巡视指导,启发并引导学生,通过添加辅助线,将问题进行转化,学生写出证明过程,并讨论归纳出结论,教师做出点评)

  结论:在同圆中,同弧所对的圆周角相等,都等于该条弧所对圆心角的一半

  4.变式拓展,引出重点

  将上述结论改为“在同圆或等圆中,等弧所对的圆周角相等吗?

  (学生思考、推理、讨论、总结出圆周角定理,教师板书)

  圆周角定理: 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

  强调:(1)定理的适用范围:同圆或等圆(2)同弧或等弧所对的圆周角相等(3)同弧或等弧所对的圆周角等于它所对圆心角的一半

  (教师强调圆周角定理的内容,学生思考、默记、熟悉定理,加深对定理的理解)

  三、应用练习,巩固提高

  1.范例精析:

  例:如图,在⊙O中,∠CBD=30° ,∠BDC=20°,求∠A(图略)

  (鼓励学生用多种方法解决问题,发散学生的思维,培养学生良好的思维品质,让学生书写推力计算过程,教师补充、点评、并和学生一起归纳解法。两种解法分别应用了圆周角定理中的两个结论,进一步对本节课的重点知识熟练深化,同时又培养了学生规范的书写表达能力)

  2.应用迁移:

  (1)比比看谁算得快:(图略)

  (本小题既可巩固圆周角定理,又可培养学生的竞争意识以适应时代的要求,同时对回答问题积极准确的学生提出表扬,激发学生的学习积极性)

  (2)生活中的数学

  如图。在足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同伴乙已经冲到B点,这时甲是直接射门好,还是将球传给乙,让乙射门好﹙仅从射门角度考虑﹚(图略)

  (选用学生熟悉的生活材料,让学生通过合作交流,讨论找出合理的解答方法,通过本小题的练习,使学生体味到生活离不开数学,从而激发学生应用数学的意识)

  四、总结评价,感悟收获

  通过本节课的学习你有哪些收获?(学生归纳总结,老师点评)

  知识:(1)圆周角的定义;

  (2)圆周角定理。

  能力:观察、操作、分析、归纳、表达等能力。

  思想方法:分类讨论思想、转化思想、类比思想、数形结合思想、

  五、作业设计,查漏补缺

  1.课本习题:P88.1.2.3.P89.5.P124.11

  2.在⊙O中,圆心角∠AOB=70°,点C是⊙O上异于A、B的一点,求圆周角∠AOB的度数。

  3.生活中的数学:监控器的监控范围是65度,圆形的博物馆内需要安装几盏才能全方位监控?(图略)

  (设计课本习题与课外拓展作业,不仅可以使学生对本节课的知识加以巩固、提高和查漏补缺,而且让学生会用数学的眼光和头脑去观察和思考世界,达到学以致用)

  教学反思

  成功之处:本节课内容丰富,结构合理,设计精细。教学时能根据学生实际遵循认知规律,由浅入深,循序渐进,及时了解学生的学习情况,灵活调整教学内容。能适时的用教材又不拘泥于教材,挖掘教材的多种功能,在教学结构的安排上也体现了新课标、新理念,重视学生自主学习、自主探究、合作交流、主动地观察与思考,各个环节衔接紧密、合理、流畅,教学效果比较理想。

  不足之处:学生不易理解用分类讨论思想证明圆周角定理,在后面的教学中逐步让学生了解分类讨论思想在解题时的应用。另外学生语言表达的准确性还需不断加强。

  11、圆周角教案一等奖设计及反思

  教材依据

  圆周角是新课标人教版九年级数学上册第二十四章第一节圆的有关性质的重要内容,本节内容依据新人教版九年级《课程标准》和《教师教学用书》及《初中数学新教材详解》。

  设计思想

  本节课是在学习了圆心角的定义、性质定理和推论的基础上,由生活实例引出圆周角,类比圆心角认识圆周角,类比圆心角的性质探究圆周角定理,精选例题及习题对本节内容进行迁移应用。

  在教学过程中本着“以人为本,让课堂变为学堂,把时间和空间更多地留给学生”为原则,注重学生的实践活动,通过让学生作图、度量、分析、猜想、验证得出结论,教学过程中充分利用学生已有的认知水平,由浅入深、逐层递进,并能适时地应用直观教具引导学生运用分类讨论及转化的数学思想对圆周角定理进行证明,化解本节课的难点。这样学生易于接受新知识,也能很快地理解并掌握圆周角定理的内容,同时给学生自主探索留有很大空间,让学生在实践探究、合作交流活动中,亲身体验应用数学的乐趣和成功的喜悦,发展学生的思维,培养学生的多种学习能力。

  教学目标

  1.知识与技能

  (1)理解圆周角的概念,掌握圆周角定理,并运用它进行简单的论证和计算。

  (2)经历圆周角定理的证明,使学生初步学会运用分类讨论的数学思想和转化的数学思想解决问题。

  2.过程与方法

  采用“活动与探究”的学习方法,由感性到理性、由简单到复杂、由特殊到一般的思维过程研究新知识,引导学生理解知识的发生发展过程,并使学生能应用所学知识解决简单的实际问题。

  3.情感、态度与价值观

  通过学生探索圆周角定理,自主学习、合作交流的学习过程,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习数学的自信心。

  教学重点

  圆周角的概念、圆周角定理及应用。

  教学难点

  圆周角定理的探究过程及定理的应用。

  教学准备

  学生:圆规、量角器、尺子

  教师:多媒体课件、活动教具

  教学过程

  一、 创设情景,引入新课

  大屏幕显示学生熟悉的画面(足球射门游戏)

  足球场有句顺口溜:“冲向球门跑,越近就越好;歪着球门跑,射点要选好。”其中蕴藏了一定的数学道理,学习了本节课,我们就可以解释其中的道理。

  二、实践探索,揭示新知

  (一)圆周角的概念

  在射门游戏中,球员射中球门的难易程度与他所处的位置B对球门AC的张角∠ABC有关。(教师出示图片,提出问题)

  图中∠ABC是圆心角吗?什么是圆心角?图中∠ABC有什么特点?

  (学生通过与圆心角的类比、分析、观察得出∠ABC的特点,进而概括出圆周角的概念,教师引导并板书)

  定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角。

  概念辨析:

  判断下列各图形中的角是不是圆周角,并说明理由。(图略)

  (通过概念辨析,让学生理解圆周角的定义,提高学生的语言表达能力,教师强调知识要点)

  强调:圆周角必须具备的两个条件:①顶点在圆上;②两边都与圆相交。

  (二)圆周角定理

  1.提出问题,引发思考

  类比圆心角的结论:同弧或等弧所对的圆心角相等。提出本节课研究的问题:同弧或等弧所对的圆周角相等吗?为了搞清这个问题,我们可以先研究:同弧所对的圆心角和圆周角的关系。

  2.活动与探究

  画一个圆心角,然后再画同弧所对的圆周角。你能画多少个圆周角? 用量角器量一量这些圆周角及圆心角的度数,你有何发现呢?

  (教师提出问题,学生作图、度量、分析、归纳出发现的结论。)

  结论:(1)同一条弧所对的圆周角有无数个,同弧所对的任意一个圆周角都相等。

  (2)同一条弧所对的圆周角等于它所对的圆心角的一半。

  由上述操作可以看出:同一条弧所对的任意一个圆周角都等于该条弧所对的圆心角的一半。

  (学生通过实践探究,讨论概括出结论,教师点评)

  3.推理与论证

  (1)教师演示活动教具,一条弧所对的圆心角只有一个,所对的圆周角有无数个,我们没有办法一一论证,提出本节课研究方法:分类讨论法。

  (教师演示,引导学生观察圆心与圆周角的位置关系,学生观察、小组交流,最后得出结论,教师出示圆心和圆周角的三种位置关系图片)

  (2)分类讨论,证明结论 ① 当圆心在圆周角的一条边上时,如何证明?(从特殊情况入手,学生通过观察、分析、讨论,证明所发现的结论,教师鼓励学生看清此数学模型。)

  ②另外两种情况如何证明,可否转化成第一种情况呢?

  (学生采取小组合作的学习方式进行探索发现,教师巡视指导,启发并引导学生,通过添加辅助线,将问题进行转化,学生写出证明过程,并讨论归纳出结论,教师做出点评)

  结论:在同圆中,同弧所对的圆周角相等,都等于该条弧所对圆心角的一半

  4.变式拓展,引出重点

  将上述结论改为“在同圆或等圆中,等弧所对的圆周角相等吗?

  (学生思考、推理、讨论、总结出圆周角定理,教师板书)

  圆周角定理: 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的`一半。

  强调:(1)定理的适用范围:同圆或等圆(2)同弧或等弧所对的圆周角相等(3)同弧或等弧所对的圆周角等于它所对圆心角的一半

  (教师强调圆周角定理的内容,学生思考、默记、熟悉定理,加深对定理的理解)

  三、应用练习,巩固提高

  1.范例精析:

  例:如图,在⊙O中,∠CBD=30° ,∠BDC=20°,求∠A(图略)

  (鼓励学生用多种方法解决问题,发散学生的思维,培养学生良好的思维品质,让学生书写推力计算过程,教师补充、点评、并和学生一起归纳解法。两种解法分别应用了圆周角定理中的两个结论,进一步对本节课的重点知识熟练深化,同时又培养了学生规范的书写表达能力)

  2.应用迁移:

  (1)比比看谁算得快:(图略)

  (本小题既可巩固圆周角定理,又可培养学生的竞争意识以适应时代的要求,同时对回答问题积极准确的学生提出表扬,激发学生的学习积极性)

  (2)生活中的数学

  如图。在足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同伴乙已经冲到B点,这时甲是直接射门好,还是将球传给乙,让乙射门好﹙仅从射门角度考虑﹚(图略)

  (选用学生熟悉的生活材料,让学生通过合作交流,讨论找出合理的解答方法,通过本小题的练习,使学生体味到生活离不开数学,从而激发学生应用数学的意识)

  四、总结评价,感悟收获

  通过本节课的学习你有哪些收获?(学生归纳总结,老师点评)

  知识:(1)圆周角的定义;

  (2)圆周角定理。

  能力:观察、操作、分析、归纳、表达等能力。

  思想方法:分类讨论思想、转化思想、类比思想、数形结合思想、

  五、作业设计,查漏补缺

  1.课本习题:P88.1.2.3.P89.5.P124.11

  2.在⊙O中,圆心角∠AOB=70°,点C是⊙O上异于A、B的一点,求圆周角∠AOB的度数。

  3.生活中的数学:监控器的监控范围是65度,圆形的博物馆内需要安装几盏才能全方位监控?(图略)

  (设计课本习题与课外拓展作业,不仅可以使学生对本节课的知识加以巩固、提高和查漏补缺,而且让学生会用数学的眼光和头脑去观察和思考世界,达到学以致用)

  教学反思

  成功之处:本节课内容丰富,结构合理,设计精细。教学时能根据学生实际遵循认知规律,由浅入深,循序渐进,及时了解学生的学习情况,灵活调整教学内容。能适时的用教材又不拘泥于教材,挖掘教材的多种功能,在教学结构的安排上也体现了新课标、新理念,重视学生自主学习、自主探究、合作交流、主动地观察与思考,各个环节衔接紧密、合理、流畅,教学效果比较理想。

  不足之处:学生不易理解用分类讨论思想证明圆周角定理,在后面的教学中逐步让学生了解分类讨论思想在解题时的应用。另外学生语言表达的准确性还需不断加强。

  12、勾股定理的逆定理教案

  一、教学目标

  1.灵活应用勾股定理及逆定理解决实际问题。

  2.进一步加深性质定理与判定定理之间关系的认识。

  二、重点、难点

  1.重点:灵活应用勾股定理及逆定理解决实际问题。

  2.难点:灵活应用勾股定理及逆定理解决实际问题。

  3.难点的突破方法:

  三、课堂引入

  创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。

  四、例习题分析

  例1(P83例2)

  分析:⑴了解方位角,及方位名词;

  ⑵依题意画出图形;

  ⑶依题意可得PR=12×1.5=18.PQ=16×1.5=24.QR=30;

  ⑷因为242+182=302.PQ2+PR2=QR2.根据勾股定理的逆定理,知∠QPR=90°;

  ⑸∠PRS=∠QPR―∠QPS=45°。

  小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。

  例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。

  分析:⑴若判断三角形的形状,先求三角形的三边长;

  ⑵设未知数列方程,求出三角形的三边长5、12、13;

  ⑶根据勾股定理的逆定理,由52+122=132.知三角形为直角三角形。

  解略。

  本题帮助培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。

  13、勾股定理的逆定理教案

  一、内容和内容解析

  1.内容

  应用勾股定理及勾股定理的逆定理解决实际问题。

  2.内容解析

  运用勾股定理的逆定理可以从三角形边的数量关系来识别三角形的形状,它是用代数方法来研究几何图形,也是向学生渗透“数形结合”这一数学思想方法的很好素材。综合运用勾股定理及其逆定理能帮助我们解决实际问题。

  基于以上分析,可以确定本课的教学重点是灵活运用勾股定理的逆定理解决实际问题。

  二、目标和目标解析

  1.目标

  (1)灵活应用勾股定理及逆定理解决实际问题。

  (2)进一步加深性质定理与判定定理之间关系的认识。

  2.目标解析

  达成目标(1)的标志是学生通过合作、讨论、动手实践等方式,在应用题中建立数学模型,准确画出几何图形,再熟练运用勾股定理逆定理判断三角形状及求边长、面积、角度等;

  目标(2)能先用勾股定理的逆定理判断一个三角形是直角三角形,再用勾股定理及直角三角形的性质进行有关的计算和证明。

  三、教学问题诊断分析

  对于大部分学生将实际问题抽象成数学模型并进行解析与应用,有一定的困难,所以在教学时应该注意启发引导学生从实际生活中所遇到的问题出发,鼓励学生以勾股定理及逆定理的知识为载体建立数学模型,利用数学模型去解决实际问题。

  本课的教学难点是灵活运用勾股定理及逆定理解决实际问题。

  四、教学过程设计

  1.复习反思,引出课题

  问题1 通过前面的学习,我们对勾股定理及其逆定理的知识有一定的了解,请说出勾股定理及其逆定理的内容。

  师生活动:学生回答勾股定理的内容“如果直角三角形的两条直角边长分别为,斜边长为,那么;勾股定理的逆定理“如果三角形的三边长满足,那么这个三角形是直角三角形。

  追问:你能用勾股定理及逆定理解决哪些问题?

  师生活动:学生通过思考举手回答,教师板书课题。

  【设计意图】通过复习勾股定理及其逆定理来引入本课时的学习任务――应用勾股定理及逆定理解决有关实际问题。

  2. 点击范例,以练促思

  问题2 某港口位于东西方向的海岸线上。“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里。它们离开港口一个半小时后相距30海里。如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?

  师生活动:学生读题,理解题意,弄清楚已知条件和需解决的问题,教师通过梯次性问题的展示,适时点拨,学生尝试画图、估测、交流中分化难点完成解答。

  追问1:请同学们认真审题,弄清已知是什么?解决的问题是什么?

  师生活动:学生通过思考举手回答,教师在黑板上列出:已知两种船的航速,它们的航行时间以及相距的路程, “远航”号的航向――东北方向;解决的问题是“海天”号的航向。

  追问2:你能根据题意画出图形吗?

  师生活动:学生尝试画图,教师在黑板上或多媒体中画出示意图。

  追问3:在所画的图中哪个角可以表示“海天”号的航向?图中知道哪个角的度数?

  师生活动:学生小组讨论交流回答问题“海天”号的航向只要能确定∠QPR的大小即可。组内讨论解答,小组代表展示解答过程,教师适时点评,多媒体展示规范解答过程。

  解:根据题意,

  因为

  ,即

  ,所以

  由“远航”号沿东北方向航行可知

  。因此

  ,即“海天”号沿西北方向航行。

  课堂练习1. 课本33页练习第3题。

  课堂练习2. 在

  港有甲、乙两艘渔船,若甲船沿北偏东

  方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度前进,1小时后甲船到达

  岛,乙船到达

  岛,且

  岛与

  岛相距17海里,你能知道乙船沿哪个方向航行吗?

  【设计意图】学生在规范化的解答过程及练习中,提升对勾股定理逆定理的认识以及实际应用的能力。

  3. 补充训练,巩固新知

  问题3 实验中学有一块四边形的空地

  若每平方米草皮需要200元,问学校需要投入多少资金购买草皮?

  师生活动:先由学生独立思考。若学生有想法,则由学生先说思路,然后教师追问:你是怎么想到的?对学生思路中的合理成分进行总结;若学生没有思路,教师可引导学生分析:从所要求的结果出发是要知道四边形的面积,而四边形被它的一条对角线分成两个三角形,求出两个三角形的面积和即可。启发学生形成思路,最后由学生演板完成。

  【设计意图】引导学生利用辅助线解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。

  4. 反思小结,观点提炼

  教师引导学生参照下面两个方面,回顾本节课所学的主要内容,进行相互交流:

  (1)知识总结:勾股定理以及逆定理的实际应用;

  (2)方法归纳:数学建模的思想。

  【设计意图】通过小结,梳理本节课所学内容,总结方法,体会思想。

  5.布置作业

  教科书34页习题17.2第3题,第4题,第5题,第6题。

  五、目标检测设计

  1.小明在学校运动会上负责联络,他先从检录处走了75米到达起点,又从起点向东走了100米到达终点,最后从终点走了125米,回到检录处,则他开始走的方向是(假设小明走的每段都是直线) ( )

  A。南北 B。东西 C。东北 D。西北

  【设计意图】考查运用勾股定理的逆定理解决实际生活问题。

  2.甲、乙两船同时从

  港出发,甲船沿北偏东

  的方向,以每小时9海里的速度向

  岛驶去,乙船沿另一个方向,以每小时12海里的速度向

  岛驶去,3小时后两船同时到达了目的地。如果两船航行的速度不变,且

  两岛相距45海里,那么乙船航行的方向是南偏东多少度?

  【设计意图】考查建立数学模型,准确画出几何图形,运用勾股定理的逆定理解决实际生活问题。

  3.如图是一块四边形的菜地,已知

  求这块菜地的面积。

  【设计意图】考查利用勾股定理及逆定理将不规则图形转化为直角三角形,巧妙地求解。

  14、勾股定理的逆定理教案

  重点、难点分析

  本节内容的重点是勾股定理的逆定理及其应用。它可用边的关系判断一个三角形是否为直角三角形。为判断三角形的形状提供了一个有力的依据。

  本节内容的难点是勾股定理的逆定理的应用。在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方。

  教法建议:

  本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法。通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题。在课堂教学中营造轻松、活泼的课堂气氛。通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的。具体说明如下:

  (1)让学生主动提出问题

  利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来。这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容。所有这些都由学生自己完成,估计学生不会感到困难。这样设计主要是培养学生善于提出问题的习惯及能力。

  (2)让学生自己解决问题

  判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路。

  (3)通过实际问题的解决,培养学生的数学意识。

  教学目标:

  1、知识目标:

  (1)理解并会证明勾股定理的逆定理;

  (2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;

  (3)知道什么叫勾股数,记住一些觉见的勾股数。

  2、能力目标:

  (1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

  (2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力。

  3、情感目标:

  (1)通过自主学习的发展体验获取数学知识的感受;

  (2)通过知识的纵横迁移感受数学的辩证特征。

  教学重点:勾股定理的逆定理及其应用

  教学难点:勾股定理的逆定理及其应用

  教学用具:直尺,微机

  教学方法:以学生为主体的讨论探索法

  教学过程:

  1、新课背景知识复习(投影)

  勾股定理的内容

  文字叙述(投影显示)

  符号表述

  图形(画在黑板上)

  2、逆定理的获得

  (1)让学生用文字语言将上述定理的逆命题表述出来

  (2)学生自己证明

  逆定理:如果三角形的三边长 有下面关系:

  那么这个三角形是直角三角形

  强调说明:(1)勾股定理及其逆定理的区别

  勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理。

  (2)判定直角三角形的方法:

  ①角为 、②垂直、③勾股定理的逆定理

  2、 定理的应用(投影显示题目上)

  例1 如果一个三角形的三边长分别为

  则这三角形是直角三角形

  例2 如图,已知:CD⊥AB于D,且有

  求证:△ACB为直角三角形。

  以上例题,分别由学生先思考,然后回答。师生共同补充完善。(教师做总结)

  4、课堂小结:

  (1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)

  (2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用。

  5、布置作业:

  a、书面作业P131#9

  b、上交作业:已知:如图,△DEF中,DE=17.EF=30.EF边上的中线DG=8

  求证:△DEF是等腰三角形

  15、勾股定理的逆定理教案

  一、创设问属情境,引入新课

  活动1(1)总结直角三角形有哪些性质。(2)一个三角形,满足什么条件是直角三角形?

  设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,提高学生发现反思问题的能力。

  师生行为学生分组讨论,交流总结;教师引导学生回忆。

  本活动,教师应重点关注学生:①能否积极主动地回忆,总结前面学过的旧知识;②能否“温故知新”。

  生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余,(3)两直角边的平方和等于斜边的平方:(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半。

  师:那么,一个三角形满足什么条件,才能是直角三角形呢?

  生:有一个内角是90°,那么这个三角形就为直角三角形。

  生:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形。

  师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b斜边c具有一定的数量关系即a2+b2=c2.我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人如何做?

  二、讲授新课

  活动2问题:据说古埃及人用下图的`方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。

  这个问题意味着,如果围成的三角形的三边分别为3、4、5.有下面的关系“32+42=52”。那么围成的三角形是直角三角形。

  画画看,如果三角形的三边分别为2.5cm,6cm,6.5cm,有下面的关系,“2.52+62=6.52.画出的三角形是直角三角形吗?换成三边分别为4cm、7.5cm、8.5cm。再试一试。

  设计意图:由特殊到一般,归纳猜想出“如果三角形三边a,b,c满足a2+b2=c2.那么这个三角形就为直免三角形的结论,培养学生动手操作能力和寻求解决数学问题的一般方法。

  师生行为让学生在小组内共同合作,协手完成此活动。教师参与此活动,并给学生以提示、启发。在本活动中,教师应重点关注学生:①能否积极动手参与。②能否从操作活动中,用数学语言归纳、猜想出结论。③学生是否有克服困难的勇气。

  生:我们不难发现上图中,第(1)个结到第(4)个结是3个单位长度即AC=3;同理BC=4.AB=5.因为32+42=52.我们围成的三角形是直角三角形。

  生:如果三角形的三边分别是2.5cm,6cm,6.5cm。我们用尺规作图的方法作此三角形,经过测量后,发现6.5cm的边所对的角是直角,并且2.52+62=6.52.

  再换成三边分别为4cm,7.5cm,8.5cm的三角形,目标可以发现8.5cm的边所对的角是直角,且也有42+7.52=8.52.

  是不是三角形的三边只要有两边的平方和等于第三边的平方,就能得到一个直角三角形呢?

  活动3下面的三组数分别是一个三角形的三边长?

  16、勾股定理的逆定理教案

  一、创设问属情境,引入新课

  活动1(1)总结直角三角形有哪些性质。(2)一个三角形,满足什么条件是直角三角形?

  设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,提高学生发现反思问题的能力。

  师生行为学生分组讨论,交流总结;教师引导学生回忆。

  本活动,教师应重点关注学生:①能否积极主动地回忆,总结前面学过的旧知识;②能否“温故知新”。

  生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余,(3)两直角边的平方和等于斜边的平方:(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半。

  师:那么,一个三角形满足什么条件,才能是直角三角形呢?

  生:有一个内角是90°,那么这个三角形就为直角三角形。

  生:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形。

  师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b斜边c具有一定的数量关系即a2+b2=c2.我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人如何做?

  二、讲授新课

  活动2问题:据说古埃及人用下图的方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。

  这个问题意味着,如果围成的三角形的三边分别为3、4、5.有下面的关系“32+42=52”。那么围成的三角形是直角三角形。

  画画看,如果三角形的三边分别为2.5cm,6cm,6.5cm,有下面的关系,“2.52+62=6.52.画出的三角形是直角三角形吗?换成三边分别为4cm、7.5cm、8.5cm。再试一试。

  设计意图:由特殊到一般,归纳猜想出“如果三角形三边a,b,c满足a2+b2=c2.那么这个三角形就为直免三角形的结论,培养学生动手操作能力和寻求解决数学问题的一般方法。

  师生行为让学生在小组内共同合作,协手完成此活动。教师参与此活动,并给学生以提示、启发。在本活动中,教师应重点关注学生:①能否积极动手参与。②能否从操作活动中,用数学语言归纳、猜想出结论。③学生是否有克服困难的勇气。

  生:我们不难发现上图中,第(1)个结到第(4)个结是3个单位长度即AC=3;同理BC=4.AB=5.因为32+42=52.我们围成的三角形是直角三角形。

  生:如果三角形的三边分别是2.5cm,6cm,6.5cm。我们用尺规作图的方法作此三角形,经过测量后,发现6.5cm的边所对的角是直角,并且2.52+62=6.52.

  再换成三边分别为4cm,7.5cm,8.5cm的三角形,目标可以发现8.5cm的边所对的角是直角,且也有42+7.52=8.52.

  是不是三角形的三边只要有两边的平方和等于第三边的平方,就能得到一个直角三角形呢?

  活动3下面的三组数分别是一个三角形的三边长?

  17、勾股定理的逆定理教案

  教学目标

  1.灵活应用勾股定理及逆定理解决实际问题。

  2.进一步加深性质定理与判定定理之间关系的认识。

  重难点

  1.重点:灵活应用勾股定理及逆定理解决实际问题。

  2.难点:灵活应用勾股定理及逆定理解决实际问题。

  一、自主学习

  1、若三角形的三边是 ⑴1、、2; ⑵; ⑶32.42.52⑷9.40.41;

  ⑸(m+n)2-1.2(m+n),(m+n)2+1;则构成的是直角三角形的有( )

  A。2个 B。3个?????C。4个??????D。5个

  2、已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?

  ⑴a=9.b=41.c=40; ⑵a=15.b=16.c=6; ⑶a=2.b=,c=4;

  二、交流展示

  例1(P33例2)某港口P位于东西方向的海岸线上。“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后分别位于Q、R处,并相距30海里。 如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?

  分析:⑴了解方位角,及方位名词;⑵依题意画出图形;⑶依题意可求PR,PQ,QR;

  ⑷根据勾股定理 的逆定理,求∠QPR;⑸求∠RPN。

  小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。

  例2、一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。

  分析:⑴若判断三角形的形状,先求三角形的三边长;

  ⑵设未知数列方程,求出三角形的三边长;

  ⑶根据勾股定理的逆定理,判断三角形是否为直角三角形。

  三、合作探究

  例3.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。

  四、达标测试

  1.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为,此三角形的形状为。

  2.小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是。

  3.一根12米的电线杆AB,用铁丝AC、AD固定,现已知用去铁丝AC=15米,AD=13米,又测得地面上B、C两点之间距离是9米,B、D两点之间距离是5米,

  则电线杆和地面是否垂直,为什么?

  4.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?

  五、教学反思

  18、勾股定理的逆定理教案

  一、教学目标

  1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。

  2.探究勾股定理的逆定理的证明方法。

  3.理解原命题、逆命题、逆定理的概念及关系。

  二、重点、难点

  1.重点:掌握勾股定理的逆定理及证明。

  2.难点:勾股定理的`逆定理的证明。

  3.难点的突破方法:

  先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法。充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。

  为学生搭好台阶,扫清障碍。

  ⑴如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。

  ⑵利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。

  ⑶先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证。

  三、课堂引入

  创设情境:⑴怎样判定一个三角形是等腰三角形?

  ⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。

  四、例习题分析

  例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?

  ⑴同旁内角互补,两条直线平行。

  ⑵如果两个实数的平方相等,那么两个实数平方相等。

  ⑶线段垂直平分线上的点到线段两端点的距离相等。

  ⑷直角三角形中30°角所对的直角边等于斜边的一半。

  分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。

  ⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。

  解略。

  本题意图在于使学生了解命题,逆命题,逆定理的概念,及它们之间的关系。

  例2(P82探究)证明:如果三角形的三边长a,b,c满足a2+b2=c2.那么这个三角形是直角三角形。

  分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证。

  ⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。

  ⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。

  ⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证。

  ⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法。充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。

  证明略。

  通过让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,锻炼学生的动手操作能力,再通过探究理论证明方法,使实践上升到理论,提高学生的理性思维。

  例3(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,a=n2-1.b=2n,c=n2+1(n>1)

  求证:∠C=90°。

  分析:⑴运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大。②分别用代数方法计算出a2+b2和c2的值。③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。

  ⑵要证∠C=90°,只要证△ABC是直角三角形,并且c边最大。根据勾股定理的逆定理只要证明a2+b2=c2即可。

  ⑶由于a2+b2=(n2-1)2+(2n)2=n4+2n2+1.c2=(n2+1)2= n4+2n2+1.从而a2+b2=c2.故命题获证。

  本题目的在于使学生明确运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大。②分别用代数方法计算出a2+b2和c2的值。③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。

  19、勾股定理的逆定理教案

  教学目标:

  一知识技能

  1.理解勾股定理的逆定理的证明方法和证明过程;

  2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;

  二数学思考

  1.通过勾股定理的逆定理的探索,经历知识的发生发展与形成的过程;

  2.通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用。

  三解决问题

  通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。

  四情感态度

  1.通过三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一关系;

  2.在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流合作的意识和探究精神。

  教学重难点:

  一重点:勾股定理的逆定理及其应用。

  二难点:勾股定理的逆定理的证明。

  教学方法

  启发引导分组讨论合作交流等。

  教学媒体

  多媒体课件演示。

  教学过程:

  一复习孕新,引入课题

  问题:

  (1) 勾股定理的内容是什么?

  (2) 求以线段ab为直角边的直角三角形的斜边c的长:

  ① a=3.b=4

  ② a=2.5.b=6

  ③ a=4.b=7.5

  (3) 分别以上述abc为边的三角形的形状会是什么样的呢?

  二动手实践,检验推测

  1.把准备好的一根打了13个等距离结的绳子,按3个结4个结5个结的长度为边摆放成一个三角形,请观察并说出此三角形的形状?

  学生分组活动,动手操作,并在组内进行交流讨论的基础上,作出实践性预测。

  教师深入小组参与活动,并帮助指导部分学生完成任务,得出勾股定理的逆命题。在此基础上,介绍:古埃及和我国古代大禹治水都是用这种方法来确定直角的。

  2.分别以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边画出两个三角形,请观察并说出此三角形的形状?

  3.结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?

  三探索归纳,证明猜想

  问题

  1.三边长度分别为3 cm4 cm5 cm的三角形与以3 cm4 cm为直角边的直角三角形之间有什么关系?你是怎样得到的?

  2.你能证明以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边长的三角形是直角三角形吗?

  3.如图18.2-2.若△ABC的三边长

  满足

  ,试证明△ABC是直角三角形,请简要地写出证明过程。

  教师提出问题,并适时诱导,指导学生完成问题3的证明。之后,归纳得出勾股定理的逆定理。

  四尝试运用,熟悉定理

  问题

  1例1:判断由线段

  组成的三角形是不是直角三角形:

  (1)

  (2)

  2三角形的两边长分别为3和4.要使这个三角形是直角三角形,则第三条边长是多少?

  教师巡视,了解学生对知识的掌握情况。

  特别关注学生在练习中反映出的问题,有针对性地讲解,学生能否熟练地应用勾股定理的逆定理去分析和解决问题

  五类比模仿,巩固新知

  1.练习:练习题13.

  2.思考:习题18.2第5题。

  部分学生演板,剩余学生在课堂练习本上独立完成。

  小结梳理,内化新知

  六1.小结:教师引导学生回忆本节课所学的知识。

  2.作业:

  (1)必做题:习题18.2第1题(2)(4)和第3题;

  (2)选做题:习题18.2第46题。

  20、勾股定理的逆定理教案

  一、例题的意图分析

  例1(P83例2)让学生养成利用勾股定理的逆定理解决实际问题的意识。

  例2(补充)培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。

  二、课堂引入

  创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。

  三、例习题分析

  例1(P83例2)

  分析:⑴了解方位角,及方位名词;

  ⑵依题意画出图形;

  ⑶依题意可得PR=12×1.5=18.PQ=16×1.5=24.QR=30;

  ⑷因为242+182=302.PQ2+PR2=QR2.根据勾股定理的逆定理,知∠QPR=90°;

  ⑸∠PRS=∠QPR-∠QPS=45°。

  小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。

  例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。

  分析:⑴若判断三角形的形状,先求三角形的三边长;

  ⑵设未知数列方程,求出三角形的三边长5、12、13;

  ⑶根据勾股定理的逆定理,由52+122=132.知三角形为直角三角形。

  解略。

  四、课堂练习

  1.小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是。

  2.如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A、B、C三点能否构成直角三角形?为什么?

  3.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向

  21、勾股定理的逆定理教案

  一、教学目标

  1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。

  2.探究勾股定理的逆定理的证明方法。

  3.理解原命题、逆命题、逆定理的概念及关系。

  二、重点、难点

  1.重点:掌握勾股定理的逆定理及证明。

  2.难点:勾股定理的逆定理的证明。

  3.难点的突破方法:

  先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法。充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。

  为学生搭好台阶,扫清障碍。

  ⑴如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。

  ⑵利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。

  ⑶先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证。

  三、课堂引入

  创设情境:⑴怎样判定一个三角形是等腰三角形?

  ⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。

  四、例习题分析

  例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?

  ⑴同旁内角互补,两条直线平行。

  ⑵如果两个实数的平方相等,那么两个实数平方相等。

  ⑶线段垂直平分线上的点到线段两端点的距离相等。

  ⑷直角三角形中30°角所对的直角边等于斜边的一半。

  分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。

  ⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。

  解略。

  本题意图在于使学生了解命题,逆命题,逆定理的概念,及它们之间的关系。

  例2(P82探究)证明:如果三角形的三边长a,b,c满足a2+b2=c2.那么这个三角形是直角三角形。

  分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证。

  ⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。

  ⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。

  ⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证。

  ⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法。充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。

  证明略。

  通过让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,锻炼学生的动手操作能力,再通过探究理论证明方法,使实践上升到理论,提高学生的理性思维。

  例3(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,a=n2-1.b=2n,c=n2+1(n>1)

  求证:∠C=90°。

  分析:⑴运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大。②分别用代数方法计算出a2+b2和c2的值。③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。

  ⑵要证∠C=90°,只要证△ABC是直角三角形,并且c边最大。根据勾股定理的逆定理只要证明a2+b2=c2即可。

  ⑶由于a2+b2=(n2-1)2+(2n)2=n4+2n2+1.c2=(n2+1)2= n4+2n2+1.从而a2+b2=c2.故命题获证。

  本题目的在于使学生明确运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大。②分别用代数方法计算出a2+b2和c2的值。③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。

  22、切线的判定定理教案

  【内容概述】

  证明圆的切线是近几年中考常见的数学问题之一。最常用的是利用“经过半径的外端并且垂直于这条半径的直线是圆的切线”证明。

  本内容通过动手操作得出切线的判定定理,再利用解决两道例题,总结归纳出两种具体的证法:

  ①当直线与圆有一个公共点时,把圆心和这个公共点连结起来,证明直线垂直于这条半径,简称为“连半径,证垂直”;

  ②当直线和圆的公共点没有明确时,可过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称为“作垂直,证半径”。

  归纳总结后,马上给予两道对应练习题巩固理解两种证明方法。

  【教学重难点】

  理解切线的判定方法,能选择正确的方法证明一条直线是圆的切线。

  【教学目标】

  掌握判断圆的切线的方法,并灵活解题。进一步培养使用“分类”与“归纳”等思想方法的能力。

  【教学过程】

  一、复习引入

  平面内直线和圆存在着三种位置关系,即直线和圆相离、直线和圆相切、直线和圆相交,这三种位置关系中最重要的是直线和圆相切。那么怎样证明直线和圆相切呢?怎样判定一条直线是圆的切线?

  ⑴和圆只有一个公共点的直线是圆的切线;(定义)

  ⑵到圆心的距离等于半径的直线是圆的切线;(d=r)

  除了这两种方法,还有没有其他方法判定一条直线是圆的切线呢?

  活动一:在练习本上画一个圆O,做一个半径OA,做一条直线L,使L经过点A且垂直于OA。这样的直线能画几条?这条直线和圆是什么位置关系?为什么?你得到了什么结论?

  切线判定定理:经过直径的一端,且垂直于这条直径的直线是圆的切线。

  活动二:分析定理。经过直径的一端,且垂直于这条直径的直线是圆的切线。

  这个定理有什么用?证明一条直线是圆的切线,那根据这个判定定理,要证明一条直线是圆的切线,需要几个条件?分别是什么?

  对定理的理解:①经过半径外端。 ②垂直于这条半径。

  定理中的两个条件缺一不可。

  二、典型例题

  例1:如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,

  求证:直线AB是⊙O的切线。

  证明:连结0C

  ∵0A=0B,CA=CB,

  ∴AB⊥OC。

  ∵直线AB经过半径0C的外端C,

  并且垂直于半径0C,

  ∴AB是⊙O的切线。

  【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的`外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线。

  例2:如图,P是∠BAC上的平分线上一点,PD⊥AC,垂足为D,请问AB与以P

  为圆心、PD为半径的圆相切吗?为什么 ?

  证明:过P作PE⊥AB于E

  ∵AP平分∠BAC,PD⊥AC

  ∴PE=PD(角平分线上的点到角两边距离相等)

  ∴圆心P到AB的距离PE=PD=半径

  ∴AB与圆相切

  【设计意图】通过例一和例二的解答,总结证明切线的两种添加辅助线的方法。

  ①当直线与圆有一个公共点时,把圆心和这个公共点连结起来,证明直线垂直于这条半径,简称为“连半径,证垂直”;

  ②当直线和圆的公共点没有明确时,可过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称为“作垂直,证半径”。

  三、知识应用(练习)

  1、如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB的延长线上

  的一点,AE⊥DC交DC的延长线于点E,弦AC平分∠EAB。

  求证:DE是⊙O的切线。

  [分析]:因直线DE与⊙O有公共点C,故应采用“连半径,证垂直”的方法。

  证明:连接OC,则OA=OC,

  ∴∠CAO=∠ACO(等边对等角)

  ∵AC平分∠EAB(已知)

  ∴∠EAC=∠CAO(角平分线的定义)

  ∴∠EAC=∠ACO(等量代换)

  ∴AE∥CO,(内错角相等,两直线平行)

  又AE⊥DE,

  ∴CO⊥DC,

  ∴DE是⊙O的切线。

  【评析】本题综合运用了圆的切线的性质与判定定理。一定要注意区分这两个定理的题设与结论,注意在什么情况下可以用切线的性质定理,在什么情况下可以用切线的判定定理。希望同学们通过本题对这两个定理有进一步的认识。本题若作OC⊥CD,就判断出了CD与⊙O相切,这是错误的。这样做相当于还未探究、判断,就以经得出了结论,显然是错误的。

  2、如图,已知在△ABC中,CD是AB上的高,且CD=AB,E、F分别是AC、

  BC的中点,求证:以EF为直径的⊙O 与AB 相切。

  [分析]:因直线AB与⊙O无确定的公共点,故应采用“作垂直,证半径”方法。

  证明:过O点作OH⊥AB于H

  ∵E、F分别为AC、BC的中点(已知)

  ∴EF∥AB,且EF=AB(三角形中位线平行于第三边,且等于第三边的一半)

  ∴G点为CD的中点,OH=GD=CD

  ∵CD=AB ∴EF=CD

  ∴OH=EF

  ∴AB为⊙O的切线

  四、小结升华

  本节课里,你学到了哪些知识,它们是如何应用的?

  证明切线的方法:(1)直线和圆有交点时,“连半径,证垂直”;

  (2)直线和圆无确定交点时,“作垂直,证半径”。

  【设计意图】让学生自己通过这节课的学习归纳总结出本知识点,即判断直线与

  圆相切的方法以及二种添加辅助线的方法。

  23、勾股定理教案一等奖

  教学目标

  1、知识与技能目标

  学会观察图形,勇于探索图形间的关系,培养学生的空间观念。

  2、过程与方法

  (1)经历一般规律的'探索过程,发展学生的抽象思维能力。

  (2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

  3、情感态度与价值观

  (1)通过有趣的问题提高学习数学的兴趣。

  (2)在解决实际问题的过程中,体验数学学习的实用性。

  教学重点:

  探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。

  教学难点:

  利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。

  教学准备:

  多媒体

  教学过程:

  第一环节:创设情境,引入新课(3分钟,学生观察、猜想)

  情景:

  如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?

  第二环节:合作探究(15分钟,学生分组合作探究)

  学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算。

  第三环节:做一做(7分钟,学生合作探究)

  教材23页

  李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺。

  (1)你能替他想办法完成任务吗?

  (2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?

  (3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?

  第四环节:巩固练习(10分钟,学生独立完成)

  1.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走。上午10:00. 甲、乙两人相距多远?

  2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离。

  3.有一个高为1、5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0、5米,问这根铁棒有多长?

  第五环节课堂小结(3分钟,师生问答)

  内容:如何利用勾股定理及逆定理解决最短路程问题?

  第六环节:布置作业(2分钟,学生分别记录)

  作业:1.课本习题1.5第1.2.3题。

  要求:A组(学优生):1、2、3

  B组(中等生):1、2

  C组(后三分之一生):1

  24、勾股定理教案一等奖

  教学目标:

  1、知识目标:

  (1)掌握勾股定理;

  (2)学会利用勾股定理进行计算、证明与作图;

  (3)了解有关勾股定理的历史。

  2、能力目标:

  (1)在定理的证明中培养学生的拼图能力;

  (2)通过问题的解决,提高学生的运算能力

  3、情感目标:

  (1)通过自主学习的发展体验获取数学知识的感受;

  (2)通过有关勾股定理的历史讲解,对学生进行德育教育。

  教学重点:勾股定理及其应用

  教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育。

  教学用具:直尺,微机

  教学方法:以学生为主体的讨论探索法

  教学过程:

  1、新课背景知识复习

  (1)三角形的三边关系

  (2)问题:(投影显示)

  直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?

  2、定理的获得

  让学生用文字语言将上述问题表述出来。

  勾股定理:直角三角形两直角边的平方和等于斜边的平方。

  强调说明:

  (1)勾――最短的边、股――较长的直角边、弦――斜边

  (2)学生根据上述学习,提出自己的问题(待定)

  学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论。

  3、定理的证明方法

  方法一:将四个全等的直角三角形拼成如图1所示的正方形。

  方法二:将四个全等的直角三角形拼成如图2所示的正方形。

  方法三:“总统”法、如图所示将两个直角三角形拼成直角梯形。

  以上证明方法都由学生先分组讨论获得,教师只做指导、最后总结说明

  4、定理与逆定理的应用

  5、课堂小结:

  (1)勾股定理的内容

  (2)勾股定理的作用

  已知直角三角形的两边求第三边

  已知直角三角形的一边,求另两边的关系

  6、布置作业:

  a、书面作业P130#1、2、3

  b、上交作业P132#1、3

  25、勾股定理教案一等奖

  一、教学目标

  1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。

  2.探究勾股定理的逆定理的证明方法。

  3.理解原命题、逆命题、逆定理的概念及关系。

  二、重点、难点

  1.重点:掌握勾股定理的逆定理及证明。

  2.难点:勾股定理的逆定理的证明。

  3.难点的突破方法:

  先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法。充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。

  为学生搭好台阶,扫清障碍。

  ⑴如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。

  ⑵利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。

  ⑶先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证。

  三、课堂引入

  创设情境:

  ⑴怎样判定一个三角形是等腰三角形?

  ⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。

  四、例习题分析

  例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?

  ⑴同旁内角互补,两条直线平行。

  ⑵如果两个实数的平方相等,那么两个实数平方相等。

  ⑶线段垂直平分线上的点到线段两端点的距离相等。

  ⑷直角三角形中30°角所对的直角边等于斜边的一半。

  26、八年级数学下册勾股定理的逆定理教案一等奖

  在教学工作者开展教学活动前,时常需要用到教案,教案是教学蓝图,可以有效提高教学效率。那么你有了解过教案吗?以下是小编为大家收集的人教版八年级数学下册17.2 勾股定理的逆定理精品教案,仅供参考,欢迎大家阅读。

  教学目标

  1.灵活应用勾股定理及逆定理解决实际问题。

  2.进一步加深性质定理与判定定理之间关系的认识。

  重难点

  1.重点:灵活应用勾股定理及逆定理解决实际问题。

  2.难点:灵活应用勾股定理及逆定理解决实际问题。

  一、自主学习

  1、若三角形的三边是 ⑴1、、2; ⑵; ⑶32.42.52⑷9.40.41;

  ⑸(m+n)2-1.2(m+n),(m+n)2+1;则构成的是直角三角形的有( )

  A。2个 B。3个?????C。4个??????D。5个

  2、已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?

  ⑴a=9.b=41.c=40; ⑵a=15.b=16.c=6; ⑶a=2.b=,c=4;

  二、交流展示

  例1(P33例2)某港口P位于东西方向的海岸线上。“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后分别位于Q、R处,并相距30海里。 如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?

  分析:⑴了解方位角,及方位名词;⑵依题意画出图形;⑶依题意可求PR,PQ,QR;

  ⑷根据勾股定理 的逆定理,求∠QPR;⑸求∠RPN。

  小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的。意识。

  例2、一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。

  分析:⑴若判断三角形的形状,先求三角形的三边长;

  ⑵设未知数列方程,求出三角形的三边长;

  ⑶根据勾股定理的逆定理,判断三角形是否为直角三角形。

  三、合作探究

  例3.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。

  四、达标测试

  1.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为,此三角形的形状为。

  2.小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是。

  3.一根12米的电线杆AB,用铁丝AC、AD固定,现已知用去铁丝AC=15米,AD=13米,又测得地面上B、C两点之间距离是9米,B、D两点之间距离是5米,

  则电线杆和地面是否垂直,为什么?

  4.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?

  五、教学反思

  27、高中数学正弦定理教案一等奖

  一、教材分析

  1.教材地位和作用

  在初中,学生已经学习了三角形的边和角的基本关系;同时在必修4 ,学生也学习了三角函数、平面向量等内容。这些为学生学习正弦定理提供了坚实的基础。正弦定理是初中解直角三角形的延伸,是揭示三角形边、角之间数量关系的重要公式,本节内容同时又是学生学习解三角形,几何计算等后续知识的基础,而且在物理学等其它学科、工业生产以及日常生活等常常涉及解三角形的问题。 依据教材的上述地位和作用,我确定如下教学目标和重难点

  2.教学目标

  (1)知识目标:

  ①引导学生发现正弦定理的内容,探索证明正弦定理的方法;

  ②简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题。

  (2)能力目标:

  ①通过对直角三角形边角数量关系的研究,发现正弦定理,体验用特殊到一般的思想方法发现数学规律的过程。

  ②在利用正弦定理来解三角形的过程中,逐步培养应用数学知识来解决社会实际问题的能力。

  (3)情感目标:通过设立问题情境,激发学生的学习动机和好奇心理,使其主动参与双边交流活动。通过对问题的提出、思考、解决培养学生自信、自立的优良心理品质。通过教师对例题的讲解培养学生良好的学习习惯及科学的学习态度。 3.教学的重﹑难点

  教学重点:正弦定理的内容,正弦定理的证明及基本应用; 教学难点:正弦定理的探索及证明;

  教学中为了达到上述目标,突破上述重难点,我将采用如下的教学方法与手段

  二、教学方法与手段

  1.教学方法

  教学过程中以教师为主导,学生为主体,创设和谐、愉悦教学环境。根据本节课内容和学生认知水平,我主要采用启导法、感性体验法、多媒体辅助教学。

  2.学法指导

  学情调动:学生在初中已获得了直角三角形边角关系的初步知识,正因如此学生在心理上会提出如何解决斜三角形边角关系的疑问。

  学法指导:指导学生掌握“观察——猜想——证明——应用”这一思维方法,让学生在问题情景中学习,再通过对实例进行具体分析,进而观察归纳、演练巩固,由具体到抽象,逐步实现对新知识的理解深化。

  3.教学手段

  利用多媒体展示图片,极大的吸引学生的注意力,活跃课堂气氛,调动学生参与解决问题的积极性。为了提高课堂效率,便于学生动手练习,我把本节课的例题、课堂练习制作成一张习题纸,课前发给学生。

  下面我讲解如何运用上述教学方法和手段开展教学过程

  三、教学过程设计

  教学流程:

  引出课题

  引出新知

  归纳方法

  巩固新知

  布置作业

  四、总结分析:

  现代教育心理学的研究认为,有效的性质概念教学是建立在学生已有知识结构基础上的,因此我在教学设计过程中注意了: ㈠在学生已有知识结构和新性质概念间寻找“最近发展区”。 ㈡引导学生通过同化,顺应掌握新概念。

  ㈢设法走出“性质概念一带而过,演习作业铺天盖地”的误区,促使自己与学生一起走进“重视探究、重视交流、重视过程” 的新天地。

  我认为本节课的设计应遵循教学的基本原则;注重对学生思维的发展;贯彻教师对本节内容的理解;体现“学思结合﹑学用结合”原则。希望对学生的思维品质的培养﹑数学思想的建立﹑心理品质的优化起到良好的作用。

  设计意图:我的板书设计的指导原则:简明直观,重点突出。本节课的板书教学重点放在黑板的正中间,为了能加深学生对正弦定理以及其应用的认识,把例题放在中间,以期全班同学都能看得到。

  谢谢!

  28、高中数学正弦定理教案一等奖

  一、教材分析

  《正弦定理》是人教版教材必修五第一章《解三角形》的第一节内容,也是三角形理论中的一个重要内容,与初中学习的三角形的边和角的基本关系有密切的联系。在此之前,学生已经学习过了正弦函数和余弦函数,知识储备已足够。它是后续课程中解三角形的理论依据,也是解决实际生活中许多测量问题的工具。因此熟练掌握正弦定理能为接下来学习解三角形打下坚实基础,并能在实际应用中灵活变通。

  二、教学目标

  根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

  知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。

  能力目标:探索正弦定理的证明过程,用归纳法得出结论,并能掌握多种证明方法。

  情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。

  三、教学重难点

  教学重点:正弦定理的内容,正弦定理的证明及基本应用。

  教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

  四、教法分析

  依据本节课内容的特点,学生的认识规律,本节知识遵循以教师为主导,以学生为主体的指导思想,采用与学生共同探索的教学方法,命题教学的发生型模式,以问题实际为参照对象,激发学生学习数学的好奇心和求知欲,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化,并且运用例题和习题来强化内容的掌握,突破重难点。即指导学生掌握“观察——猜想——证明——应用”这一思维方法。学生采用自主式、合作式、探讨式的学习方法,这样能使学生积极参与数学学习活动,培养学生的合作意识和探究精神。

  五、教学过程

  本节知识教学采用发生型模式:

  1、问题情境

  有一个旅游景点,为了吸引更多的游客,想在风景区两座相邻的山之间搭建一条观光索道。已知一座山A到山脚C的上面斜距离是1500米,在山脚测得两座山顶之间的夹角是450.在另一座山顶B测得山脚与A山顶之间的夹角是300.求需要建多长的索道?

  可将问题数学符号化,抽象成数学图形。即已知AC=1500m,∠C=450.∠B=300.求AB=?

  此题可运用做辅助线BC边上的高来间接求解得出。

  提问:有没有根据已提供的数据,直接一步就能解出来的方法?

  思考:我们知道,在任意三角形中有大边对大角,小边对小角的边角关系。那我们能不能得到关于边、角关系准确量化的表示呢?

  2、归纳命题

  我们从特殊的三角形直角三角形中来探讨边与角的数量关系:

  在如图Rt三角形ABC中,根据正弦函数的定义

  29、切线长定理教案一等奖设计

  1、教材分析

  (1)知识结构

  (2)重点、难点分析

  重点:及其应用。因再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点。

  难点:与有关的证明和计算问题。如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来。

  2、教法建议

  本节内容需要一个课时。

  (1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析的基本图形;对重要的结论及时总结;

  (2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学。

  教学目标

  1.理解切线长的概念,掌握;

  2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想。

  3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度。

  教学重点:

  是教学重点

  教学难点:

  的灵活运用是教学难点

  教学过程设计:

  (一)观察、猜想、证明,形成定理

  1、切线长的概念。

  如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长。

  引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量。

  2、观察

  利用电脑变动点P的位置,观察图形的特征和各量之间的关系。

  3、猜想

  引导学生直观判断,猜想图中PA是否等于PB。PA=PB。

  4、证明猜想,形成定理。

  猜想是否正确。需要证明。

  组织学生分析证明方法。关键是作出辅助线OA,OB,要证明PA=PB。

  想一想:根据图形,你还可以得到什么结论?

  ∠OPA=∠OPB(如图)等。

  :从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

  5、归纳:

  把前面所学的切线的5条性质与一起归纳切线的性质

  6、的基本图形研究

  如图,PA,PB是⊙O的两条切线,A,B为切点。直线OP交⊙O于点D,E,交AP于C

  (1)写出图中所有的垂直关系;

  (2)写出图中所有的全等三角形;

  (3)写出图中所有的相似三角形;

  (4)写出图中所有的等腰三角形。

  说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础。

  (二)应用、归纳、反思

  例1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,

  A和B是切点,BC是直径。

  求证:AC∥OP。

  分析:从条件想,由P是⊙O外一点,PA、PB为⊙O的切线,A,B是切点可得PA=PB,∠APO=∠BPO,又由条件BC是直径,可得OB=OC,由此联想到与直径有关的定理“垂径定理”和“直径所对的圆周角是直角”等。于是想到可能作辅助线AB。

  从结论想,要证AC∥OP,如果连结AB交OP于O,转化为证CA⊥AB,OP⊥AB,或从OD为△ABC的中位线来考虑。也可考虑通过平行线的判定定理来证,可获得多种证法。

  证法一。如图。连结AB。

  PA,PB分别切⊙O于A,B

  ∴PA=PB∠APO=∠BPO

  ∴OP⊥AB

  又∵BC为⊙O直径

  ∴AC⊥AB

  ∴AC∥OP(学生板书)

  证法二。连结AB,交OP于D

  PA,PB分别切⊙O于A、B

  ∴PA=PB∠APO=∠BPO

  ∴AD=BD

  又∵BO=DO

  ∴OD是△ABC的中位线

  ∴AC∥OP

  证法三。连结AB,设OP与AB弧交于点E

  PA,PB分别切⊙O于A、B

  ∴PA=PB

  ∴OP⊥AB

  ∴=

  ∴∠C=∠POB

  ∴AC∥OP

  反思:教师引导学生比较以上证法,激发学生的学习兴趣,培养学生灵活应用知识的能力。

  例2、圆的外切四边形的两组对边的'和相等。

  (分析和解题略)

  反思:(1)例3事实上是圆外切四边形的一个重要性质,请学生记住结论。(2)圆内接四边形的性质:对角互补。

  P120练习:

  练习1填空

  如图,已知⊙O的半径为3厘米,PO=6厘米,PA,PB分别切⊙O于A,B,则PA=_______,∠APB=________

  练习2已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的内切圆分别和BC,AC,AB切于点D,E,F,求AF,AD和CE的长。

  分析:设各切线长AF,BD和CE分别为x厘米,y厘米,z厘米。后列出关于x,y,z的方程组,解方程组便可求出结果。

  (解略)

  反思:解这个题时,除了要用三角形内切圆的概念和之外,还要用到解方程组的知识,是一道综合性较强的计算题。通过对本题的研究培养学生的综合应用知识的能力。

  (三)小结

  1、提出问题学生归纳

  (1)这节课学习的具体内容;

  (2)学习用的数学思想方法;

  (3)应注意哪些概念之间的区别?

  2、归纳基本图形的结论

  3、学习了用代数方法解决几何问题的思想方法。

  (四)作业

  教材P131习题7.4A组1.(1),2.3.4.B组1题。

  探究活动

  图中找错

  你能找出(图1)与(图2)的错误所在吗?

  在图2中,P1A为⊙O1和⊙O3的切线、P1B为⊙O1和⊙O2的切线、P2C为⊙O2和⊙O3的切线。

  提示:在图1中,连结PC、PD,则PC、PD都是圆的直径,从圆上一点只能作一条直径,所以此图是一张错图,点O应在圆上。

  在图2中,设P1A=P1B=a,P2B=P2C=b,P3A=P3C=c,则有

  a=P1A=P1P3+P3A=P1P3+c①

  c=P3C=P2P3+P3A=P2P3+b②

  a=P1B=P1P2+P2B=P1P2+b③

  将②代人①式得

  a=P1P3+(P2P3+b)=P1P3+P2P3+b,

  ∴a-b=P1P3+P2P3

  由③得a-b=P1P2得

  ∴P1P2=P2P3+P1P3

  ∴P1、P2、P3应重合,故图2是错误的。

  30、高中数学正弦定理教案一等奖

  一、教材分析

  “解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验 “观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。

  二、学情分析

  我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。

  三、教学目标

  1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。

  过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。

  情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。

  2、教学重点、难点

  教学重点:正弦定理的发现与证明;正弦定理的简单应用。

  教学难点:正弦定理证明及应用。

  四、教学方法与手段

  为了更好的达成上面的教学目标,促进学习方式的。转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。

  五、教学过程

  为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:

  (一)创设情景,揭示课题

  问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?

  1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?

  问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)

  [设计说明]引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。

  (二)特殊入手,发现规律

  问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?

  引导启发学生发现特殊情形下的正弦定理。

  (三)类比归纳,严格证明

  问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?

  [设计说明]此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。

  31、精选数学勾股定理教案一等奖优秀范文

  教学目标

  1、知识与技能目标:探索并理解直角三角形的三边之间的数量关系,通过探究能够发现直角三角形中两个直角边的平方和等于斜边的平方和。

  2、过程与方法目标:经历用测量和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理能力。

  3、情感态度与价值观目标:通过本节课的学习,培养主动探究的习惯,并进一步体会数学与现实生活的紧密联系。

  教学重点

  了解勾股定理的由来,并能用它来解决一些简单的问题。

  教学难点

  勾股定理的探究以及推导过程。

  教学过程

  一、创设问题情景、导入新课

  首先出示:投影1(章前的'图文)并介绍我国古代在勾股定理研究方面的贡献,结合课本第六页谈一谈我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

  出示课件观察后回答:

  1、观察图1—2.正方形A中有_______个小方格,即A的面积为______个单位。

  正方形B中有_______个小方格,即B的面积为______个单位。

  正方形C中有_______个小方格,即C的面积为______个单位。

  2、你是怎样得出上面的结果的?

  3、在学生交流回答的基础上教师进一步设问:图1—2中,A,B,C面积之间有什么关系?学生交流后得到结论:A+B=C。

  二、层层深入、探究新知

  1、做一做

  出示投影3(书中P3图1—3)

  提问:(1)图1—3中,A,B,C之间有什么关系?(2)从图1—2.1—3中你发现什么?

  学生讨论、交流后,得出结论:以三角形两直角边为边的正方形的面积和,等于以斜边为边的正方形面积。

  2、议一议

  图1—2、1—3中,你能用三角形的边长表示正方形的面积吗?

  (1)你能发现直角三角形三边长度之间的关系吗?在同学交流的基础上,共同探讨得出:直角三角形两直角边的平方和等于斜边的平方。这就是著名的“勾股定理”。也就是说如果直角三角形的两直角边为a,b,斜边为c那么。我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

  (2)分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?

  3、想一想

  我们常见的电视的尺寸:29英寸(74厘米)的电视机,指的是屏幕的长吗?还是指的是屏幕的宽?那他指什么呢?能否运用刚才所学的知识,检验一下电视剧的尺寸是否合格?

  三、巩固练习。

  1、在图1—1的问题中,折断之前旗杆有多高?

  2、错例辨析:△ABC的两边为3和4.求第三边

  解:由于三角形的两边为3、4

  所以它的第三边的c应满足

  =25即:c=5辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题三角形ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。(2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并未交待C是斜边。

  综上所述这个题目条件不足,第三边无法求得

  四、课堂小结

  鼓励学生自己总结、谈谈自己本节课的收获,以及自己对勾股定理的理解,老师加以纠正和补充。

  五、布置作业

  32、精选数学勾股定理教案一等奖优秀范文

  教学目标

  知识与技能:

  了解勾股定理的一些证明方法,会简单应用勾股定理解决问题

  过程与方法:

  在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。

  情感态度价值观:

  通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。

  教学过程

  1、创设情境

  问题1国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”。2002年在北京召开了第24届国际数学家大会。下图就是大会会徽的图案。你见过这个图案吗?它由哪些我们学习过的基本图形组成?这个图案有什么特别的含义?

  师生活动:教师引导学生寻找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。

  设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。

  2、探究勾股定理

  观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界

  问题2相传2500多年前,毕达哥拉斯有一次在朋友家作客时,发现朋友家用转铺成的地面图案反应了直角三角形三边的某种数量关系,请你观察下图,你从中发现了什么数量关系?

  师生活动:学生先独立观察思考一分钟后,小组交流合作分析图形中两个蓝色正方形与橙色正方形有哪些数量关系,教师参与学生的讨论

  追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系?

  师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。

  设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论

  问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。

  师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。

  33、精选数学勾股定理教案一等奖优秀范文

  课题:

  勾股定理

  课型:

  新授课

  课时安排:

  1课时

  教学目的:

  一、知识与技能目标理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。

  二、过程与方法目标通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

  三、情感、态度与价值观目标了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。

  教学重点:

  引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题

  教学难点:

  用面积法方法证明勾股定理

  课前准备:

  多媒体ppt,相关图片

  教学过程:

  (一)情境导入

  1、多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,20xx年国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。

  2、多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?已知一直角三角形的两边,如何求第三边?学习了今天的这节课后,同学们就会有办法解决了。

  (二)学习新课问题一是等腰直角三角形的情形(通过多媒体给出图形),判断外围三个正方形面积有何关系?相传2500年前,毕达哥拉斯(古希腊著名的哲学家、数学家、天文学家)有一次在朋友家做客时,发现朋友家里用砖铺成的地面中反映了直角三角形三边的某种数量关系。你能观察图中的地面,看看能发现什么?对于等腰直角三角形有这样的性质:两直边的平方和等于斜边的平方那么对于一般的直角三角形是否也有这样的性质呢?请大家画一个任意的直角三角形,量一量,算一算。问题二是一般直角三角形的情形,判断这时外围三个正方形的面积是否也存在这种关系?通过这个观察和验算这个直角三角形外围的三个正方形面积之间的关系,同学们发现了什么规律吗?通过前面对两个问题的验证,可以得到勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2.

  (三)巩固练习1、如果一个直角三角形的两条边长分别是6厘米和8厘米,那么这个三角形的周长是多少厘米?2、解决课程开始时提出的情境问题。

  (四)小结

  1、背景知识介绍①《周髀算径》中,西周的商高在公元一千多年前发现了“勾三股四弦五”这一规律;②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是他的独创。

  2、通过这节课的学习,你会写方程了吗?你有什么收获和体会?

  (五)作业练习18.1中的1、2、3题。板书设计:勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2.

  34、圆周角和圆心角的关系教学反思

  反思一:圆周角和圆心角的关系教学反思

  把射门游戏问题抽象为数学问题,研究圆周角和圆心角的关系,研究圆周角和圆心角的关系,应该说,学生解决这一问题是有一定难度的,尽管如此,教学时仍应给学生留有时间和空间,让他们进行思考。

  让学生经历观察、想象、推理、操作、描述、交流等过程,多种角度直观体验数学模型,而这也正符合本章学习的主要目标。

  反思二:圆周角和圆心角的关系教学反思

  在本节课的教学中,我结合本节课教学内容、教学目标和学生的认知规律,在教学设计上,一是注重创设情境,激发学生学习的兴趣、主动性和求知欲望, 为下一步教学的顺利展开开个好头;二是注重引导学生经历探索、验证、论证、应用数学新知的过程,鼓励学生用动手实践、自主探究、合作交流的学习方法进行学 习,使学生在数学活动中深刻的理解知识和掌握由特殊到一般的认知方法。

  反思三:圆周角和圆心角的关系教学反思

  本节课我认为是一节研究性的课,结论虽然简单、易用,但是探索的过程中体现了数学的分类思想与化归思想。如何让学生自然地理解是这节课的难点。

  最开始,我是计划通过学生动手作圆周角来体会分类,但是考虑到时间的关系,没有让学生动手,尽管在后面对分类思想在本节课的'应用进行了充分的讲解,但是对于学生自主探究还是有些欠缺,使学生对“为什么要分类”体会的不是很充分。这是本节节课比较遗憾的地方。另外,没有充分考虑到不同层次学生的需求。看了各位老师的建议,我获益匪浅,在今后上课的时候对各个环节更应充分的考虑。

  35、高一物理《圆周运动》教案一等奖设计

  一、教材分析

  本节内容选自人教版物理必修2第五章第4节。本节主要介绍了圆周运动的线速度和角速度的概念及两者的关系;学生前面已经学习了曲线运动,抛体运动以及平抛运动的规律,为本节课的学习做了很好的铺垫;而本节课作为对特殊曲线运动的进一步深入学习,也为以后继续学习向心力、向心加速度和生活中的圆周运动物理打下很好的基础,在教材中有着承上启下的作用;因此,学好本节课具有重要的意义。本节课是从运动学的角度来研究匀速圆周运动 ,围绕着如何描述匀速圆周运动的快慢展开,通过探究理清各个物理量的相互关系,并使学生能在具体的问题中加以应用。

  (过渡句)知道了教材特点,我们再来了解一下学生特点。也就是我说课的第二部分:学情分析。

  二、学情分析

  学生虽然已经具备了较为完备的直线运动的知识和曲线运动的初步知识,并学会了用比值定义法描述匀速直线运动的快慢,尽管如此,但由于匀速圆周运动的特殊性和复杂性以及学生认知水平的差异,本节课的内容对学生来讲仍然是一个不小的台阶。

  (过渡句)基于以上的教材特点和学生特点,我制定了如下的教学目标,力图把传授知识、渗透学习方法以及培养兴趣和能力有机的融合在一起,达到最好的教学效果。

  三、教学目标

  【知识与技能】

  知道描述圆周运动快慢的两个物理量——线速度、角速度,会推导二者之间的关系。

  【过程与方法】

  通过对传动模型的应用,对线速度、角速度之间的关系有更加深入的了解,提高分析能力和抽象思维能力。

  【情感态度与价值观】

  在思考中体会物理学科严谨的逻辑关系,提高分析归纳能力,养成严谨科学的学习习惯。

  (过渡句)基于这样的教学目标,要上好一堂课,还要明确分析教学的重难点。

  四、教学重难点

  【重点】

  线速度、角速度的概念。

  【难点】

  1.二者关系的推导过程;

  2. 对匀速圆周运动是变速运动的理解。

  (过渡句)说完了教学重难点,下面我将着重谈谈本堂课的教学过程。

  五、教学过程

  首先是导入环节:

  在这个环节中,我将展示生活中的一些运动,如摩天轮、脱水桶等,引导学生找相似点:运动轨迹是一些圆,从而引出,这种轨迹为圆周的运动叫做圆周运动——引出课题。

  接下来,我会顺势让学生再例举生活中的圆周运动,然后提出问题,直线运动我们用单位时间内的位移来描述物体的运动快慢,那么对于圆周运动又如何描述它们的运动快慢呢?

  【意图:这个问题我采用类比的方式去提问,一方面让学生回顾前面学过的直线运动,另一方面让学生带着问题去思考二者的不同,有效的启发了学生的思维,很顺利的过渡到了接下来要讲的线速度和角速度。】

  学习线速度的概念时,我会用flash配合实物电风扇的页片,让学生观察当用手缓慢拨动页片转动时,页片上分别标记的红、蓝两种与圆心距离不等的点的运动情况,哪个快那个慢。学生可以讨论发现相同的。时间里,通过的弧长长的点运动得快。于是我们就可以用二者的比值来表示线速度的大小,而且我会引导学生去发现,当时间t足够小的时候,所对于的弧长也非常短,接近于圆弧上的一个点,因此线速度是瞬时速度,它的方向也就是在圆周各点的切线方向。另外还需让学生讨论交流“匀速圆周运动”中“匀速”的含义。

  【意图:这是本堂课的一个难点,学生很容于将这里的匀速理解为速度不变。所以在这里我会再次强调速度的矢量性,它既有大小也有方向,这里的“匀速”其实是指“匀速率”,线速度大小不变,但是线速度的方向在时刻改变。】

  接下来在学习角速度的概念时,应向学生说明这个概念是根据匀速圆周运动的特点和描述运动的需要而引入的,即物体做匀速圆周运动时,每通过一段弧长都与转过一定的圆心角相对应,因而物体沿圆周转动的快慢也可以用转过的圆心角与时间比值来描述,由此引入角速度的概念。但是在讲述角速度的概念时,不需要向学生强调角速度的矢量性。因为这个会在大学学习刚体力学的时候才学,需要用右手螺旋定则确定。

  明确了两个概念之后,本堂课的一大重点就解决了,而依据教学目标,以及学生在学习过程和实际操作中暴露出的问题,如何去推导线速度、角速度之间的数学关系又是本堂课的又一难点。在这里我将带领学生去回顾数学中的表达式,然后让学生自己动手推导。

  接下来在巩固提升环节,我将让学生观察自行车传动结构示意图中的大齿轮、小齿轮、后轮三个部分的转动,分析A、B、C三个点线速度、角速度的关系。

  【意图:这是高中阶段比较典型额皮带传动问题,关键是要让学生明确两种情况下v和ω的关系:同轴、共线,在此基础上可以再提升难度:当三个轮子一起转的时候,又如何比较快慢,这样问题的设置层层深入,有梯度性,也符合学生的认知规律】

  最后是小结作业环节,我将提出如下问题:除了线速度、角速度,还有一些可以用来描述快慢的物理量,如周期T、频率f,他们之间的关系又如何?可以让学生自己尝试推导这些物理量之间的关系。

  36、高一物理《圆周运动》教案一等奖设计

  一、教材分析

  本节内容选自人教版物理必修2第五章第4节。本节主要介绍了圆周运动的线速度和角速度的概念及两者的关系;学生前面已经学习了曲线运动,抛体运动以及平抛运动的规律,为本节课的学习做了很好的铺垫;而本节课作为对特殊曲线运动的进一步深入学习,也为以后继续学习向心力、向心加速度和生活中的圆周运动物理打下很好的基础,在教材中有着承上启下的作用;因此,学好本节课具有重要的意义。本节课是从运动学的角度来研究匀速圆周运动 ,围绕着如何描述匀速圆周运动的快慢展开,通过探究理清各个物理量的相互关系,并使学生能在具体的问题中加以应用。

  (过渡句)知道了教材特点,我们再来了解一下学生特点。也就是我说课的第二部分:学情分析。

  二、学情分析

  学生虽然已经具备了较为完备的直线运动的知识和曲线运动的初步知识,并学会了用比值定义法描述匀速直线运动的快慢,尽管如此,但由于匀速圆周运动的特殊性和复杂性以及学生认知水平的差异,本节课的内容对学生来讲仍然是一个不小的台阶。

  (过渡句)基于以上的教材特点和学生特点,我制定了如下的教学目标,力图把传授知识、渗透学习方法以及培养兴趣和能力有机的融合在一起,达到最好的教学效果。

  三、教学目标

  【知识与技能】

  知道描述圆周运动快慢的两个物理量——线速度、角速度,会推导二者之间的关系。

  【过程与方法】

  通过对传动模型的应用,对线速度、角速度之间的关系有更加深入的了解,提高分析能力和抽象思维能力。

  【情感态度与价值观】

  在思考中体会物理学科严谨的逻辑关系,提高分析归纳能力,养成严谨科学的学习习惯。

  (过渡句)基于这样的教学目标,要上好一堂课,还要明确分析教学的重难点。

  四、教学重难点

  【重点】

  线速度、角速度的概念。

  【难点】

  1.二者关系的推导过程;

  2. 对匀速圆周运动是变速运动的理解。

  (过渡句)说完了教学重难点,下面我将着重谈谈本堂课的教学过程。

  五、教学过程

  首先是导入环节:

  在这个环节中,我将展示生活中的一些运动,如摩天轮、脱水桶等,引导学生找相似点:运动轨迹是一些圆,从而引出,这种轨迹为圆周的运动叫做圆周运动——引出课题。

  接下来,我会顺势让学生再例举生活中的圆周运动,然后提出问题,直线运动我们用单位时间内的位移来描述物体的运动快慢,那么对于圆周运动又如何描述它们的运动快慢呢?

  【意图:这个问题我采用类比的方式去提问,一方面让学生回顾前面学过的直线运动,另一方面让学生带着问题去思考二者的不同,有效的启发了学生的思维,很顺利的过渡到了接下来要讲的线速度和角速度。】

  学习线速度的概念时,我会用flash配合实物电风扇的页片,让学生观察当用手缓慢拨动页片转动时,页片上分别标记的红、蓝两种与圆心距离不等的点的运动情况,哪个快那个慢。学生可以讨论发现相同的。时间里,通过的弧长长的点运动得快。于是我们就可以用二者的比值来表示线速度的大小,而且我会引导学生去发现,当时间t足够小的时候,所对于的弧长也非常短,接近于圆弧上的一个点,因此线速度是瞬时速度,它的方向也就是在圆周各点的切线方向。另外还需让学生讨论交流“匀速圆周运动”中“匀速”的含义。

  【意图:这是本堂课的一个难点,学生很容于将这里的匀速理解为速度不变。所以在这里我会再次强调速度的矢量性,它既有大小也有方向,这里的“匀速”其实是指“匀速率”,线速度大小不变,但是线速度的方向在时刻改变。】

  接下来在学习角速度的概念时,应向学生说明这个概念是根据匀速圆周运动的特点和描述运动的需要而引入的,即物体做匀速圆周运动时,每通过一段弧长都与转过一定的圆心角相对应,因而物体沿圆周转动的快慢也可以用转过的圆心角与时间比值来描述,由此引入角速度的概念。但是在讲述角速度的概念时,不需要向学生强调角速度的矢量性。因为这个会在大学学习刚体力学的时候才学,需要用右手螺旋定则确定。

  明确了两个概念之后,本堂课的一大重点就解决了,而依据教学目标,以及学生在学习过程和实际操作中暴露出的问题,如何去推导线速度、角速度之间的数学关系又是本堂课的又一难点。在这里我将带领学生去回顾数学中的表达式,然后让学生自己动手推导。

  接下来在巩固提升环节,我将让学生观察自行车传动结构示意图中的大齿轮、小齿轮、后轮三个部分的转动,分析A、B、C三个点线速度、角速度的关系。

  【意图:这是高中阶段比较典型额皮带传动问题,关键是要让学生明确两种情况下v和ω的关系:同轴、共线,在此基础上可以再提升难度:当三个轮子一起转的时候,又如何比较快慢,这样问题的设置层层深入,有梯度性,也符合学生的认知规律】

  最后是小结作业环节,我将提出如下问题:除了线速度、角速度,还有一些可以用来描述快慢的物理量,如周期T、频率f,他们之间的关系又如何?可以让学生自己尝试推导这些物理量之间的关系。

  37、高一物理《匀速圆周运动》教案一等奖

  教学目标

  知识目标

  1、认识匀速圆周运动的概念。

  2、理解线速度、角速度和周期的概念,掌握这几个物理量之间的关系并会进行计算。

  能力目标

  培养学生建立模型的能力及分析综合能力。

  情感目标

  激发学生学习兴趣,培养学生积极参与的意识。

  教学建议

  教材分析

  教材首先明确要研究圆周运动中的最简单的情况,匀速圆周运动,接着从描述匀速圆周运动的快慢的角度引入线速度、角速度的概念及周期、频率、转速等概念,最后推导出线速度、角速度、周期间的关系,中间有一个思考与讨论做为铺垫。

  教法建议

  关于线速度、角速度、周期等概念的'教学建议是:通过生活实例(齿轮转动或皮带传动装置)或多媒体资料,让学生切实感受到做圆周运动的物体有运动快慢与转动快慢及周期之别,有必要引入相关的物理量加以描述。学习线速度的概念,可以根据匀速圆周运动的概念(结合课件)引导学生认识弧长

高一物理《匀速圆周运动》教案

与时间

高一物理《匀速圆周运动》教案

比值保持不变的特点,进而引出线速度的大小与方向。同时应向学生指出线速度就是物体做匀速圆周运动的瞬时速度。学习角速度和周期的概念时,应向学生说明这两个概念是根据匀速圆周运动的特点和描述运动的需要而引入的。即物体做匀速圆周运动时,每通过一段弧长都与转过一定的圆心角相对应,因而物体沿圆周转动的快慢也可以用转过的圆心角

高一物理《匀速圆周运动》教案

与时间t比值来描述,由此引入角速度的概念。又根据匀速圆周运动具有周期性的特点,物体沿圆周转动的快慢还可以用转动一圈所用时间的长短来描述,为此引入了周期的概念。讲述角速度的概念时,不要求向学生强调角速度的矢量性。在讲述概念的同时,要让学生体会到匀速圆周运动的特点:线速度的大小、角速度、周期和频率保持不变的圆周运动。


  关于“线速度、角速度和周期间的关系”的教学建议是:结合课件引导学生认识到这几个物理量在对圆周运动的描述上虽有所不同,但它们之间是有联系的,并引导学生从如下思路理解它们之间的关系:

  教学设计方案

  匀速圆周运动

  教学重点:线速度、角速度、周期的概念

  教学难点:各量之间的关系及其应用

  主要设计:

  一、描述匀速圆周运动的有关物理量。

  (一)让学生举一些物体做圆周运动的实例。

  (二)展示课件1、齿轮传动装置

  课件2、皮带传动装置

  为引入概念提供感性认识,引起思考和讨论

  (三)展示课件3:质点做匀速圆周运动

  可暂停。可读出运行的时间

,对应的弧长

高一物理《匀速圆周运动》教案

,转过的圆心角

高一物理《匀速圆周运动》教案

,进而给出线速度、角速度、周期、频率、转速等概念。


  二、线速度、角速度、周期间的关系:

  (一)重新展示课件

  1、齿轮传动装置。让学生体会到有些不同的点线速度大小相同,但角速度、周期不同,有些不同的点角速度、周期相同,但线速度大小不同;进而此导同学去分析它们之间的关系:

  探究活动

  观察与测量:请研究一下自行车飞轮与中轴轮盘通过链条的连接关系:测量一下各自的半径,并思考验证两轮的角速度关系,边缘点的线速度大小关系;有条件的话研究一下“变速自行车”的变速原理。

  38、高一物理《匀速圆周运动》教案一等奖

  教学目标

  知识目标

  1、认识匀速圆周运动的概念。

  2、理解线速度、角速度和周期的概念,掌握这几个物理量之间的关系并会进行计算。

  能力目标

  培养学生建立模型的能力及分析综合能力。

  情感目标

  激发学生学习兴趣,培养学生积极参与的意识。

  教学建议

  教材分析

  教材首先明确要研究圆周运动中的最简单的情况,匀速圆周运动,接着从描述匀速圆周运动的快慢的角度引入线速度、角速度的概念及周期、频率、转速等概念,最后推导出线速度、角速度、周期间的关系,中间有一个思考与讨论做为铺垫。

  教法建议

  关于线速度、角速度、周期等概念的'教学建议是:通过生活实例(齿轮转动或皮带传动装置)或多媒体资料,让学生切实感受到做圆周运动的物体有运动快慢与转动快慢及周期之别,有必要引入相关的物理量加以描述。学习线速度的概念,可以根据匀速圆周运动的概念(结合课件)引导学生认识弧长

高一物理《匀速圆周运动》教案

与时间

高一物理《匀速圆周运动》教案

比值保持不变的特点,进而引出线速度的大小与方向。同时应向学生指出线速度就是物体做匀速圆周运动的瞬时速度。学习角速度和周期的概念时,应向学生说明这两个概念是根据匀速圆周运动的特点和描述运动的需要而引入的。即物体做匀速圆周运动时,每通过一段弧长都与转过一定的圆心角相对应,因而物体沿圆周转动的快慢也可以用转过的圆心角

高一物理《匀速圆周运动》教案

与时间t比值来描述,由此引入角速度的概念。又根据匀速圆周运动具有周期性的特点,物体沿圆周转动的快慢还可以用转动一圈所用时间的长短来描述,为此引入了周期的概念。讲述角速度的概念时,不要求向学生强调角速度的矢量性。在讲述概念的同时,要让学生体会到匀速圆周运动的特点:线速度的大小、角速度、周期和频率保持不变的圆周运动。


  关于“线速度、角速度和周期间的关系”的教学建议是:结合课件引导学生认识到这几个物理量在对圆周运动的描述上虽有所不同,但它们之间是有联系的,并引导学生从如下思路理解它们之间的关系:

  教学设计方案

  匀速圆周运动

  教学重点:线速度、角速度、周期的概念

  教学难点:各量之间的关系及其应用

  主要设计:

  一、描述匀速圆周运动的有关物理量。

  (一)让学生举一些物体做圆周运动的实例。

  (二)展示课件1、齿轮传动装置

  课件2、皮带传动装置

  为引入概念提供感性认识,引起思考和讨论

  (三)展示课件3:质点做匀速圆周运动

  可暂停。可读出运行的时间

,对应的弧长

高一物理《匀速圆周运动》教案

,转过的圆心角

高一物理《匀速圆周运动》教案

,进而给出线速度、角速度、周期、频率、转速等概念。


  二、线速度、角速度、周期间的关系:

  (一)重新展示课件

  1、齿轮传动装置。让学生体会到有些不同的点线速度大小相同,但角速度、周期不同,有些不同的点角速度、周期相同,但线速度大小不同;进而此导同学去分析它们之间的关系:

  探究活动

  观察与测量:请研究一下自行车飞轮与中轴轮盘通过链条的连接关系:测量一下各自的半径,并思考验证两轮的角速度关系,边缘点的线速度大小关系;有条件的话研究一下“变速自行车”的变速原理。

  39、圆周角的教学设计一等奖

  教学目标

  1、 理解圆周角的概念,掌握圆周角定理及其推论,并会运用它进行论证和计算。

  2、 经历圆周角定理的证明,使学生了解分类证明命题的思想和方法,体会类比、分类的教学方法。

  3、 通过学生主动探索圆周角定理及其推论,合作交流的学习过程,学习成长的快乐及数学的应用价值。

  教学重点难点

  教学重点 圆周角的概念、圆周角定理及其应用。

  教学难点 圆周角定理的分类证明。

  教学过程

  一、情境导入

  足球场上的数学 在足球比赛中,甲带球向对方球门PQ进攻,当他冲到A点时,同伴乙已经冲到B点。有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门。问哪一种射门方式进球的可能性大?(提示:仅从射门角度考虑,射门角度越大越好。)

  设计意图:让学生感受到生活之中的数学问题,激发学习兴趣。

  二、自我探究

  1、圆周角的概念

  观察图形 APB的顶点P从圆心O移动到圆周上(电脑动画)。

  教师指出APB是圆周角。由圆心角顺利迁移到圆周角。

  学生对比圆心角的定义,尝试给出圆周角的'定义:顶点在圆上,并且两边都和圆相交的角,叫圆周角。

  辨析概念 判别下列各图形中的角是不是圆周角,并说明理由。

  思考特征 圆周角具有什么特征?

  明确结论:①顶点在圆上;②两边都和圆相交。

  设计意图:让学生能形象地感知圆周角,理解圆周角概念。

  2、合作交流,动手操作

  学生先动手画圆周角,再相互交流、比较,探究圆心与圆周角的位置关系,并请学生代表上讲台用投影展示交流成果。教师再利用电脑,动画展示圆心与圆周角可能具有的不同的位置关系,并由学生归纳出圆心与圆周角具有三种不同的位置关系:

  ① 圆心在圆周角的一边上;

  ② 圆心在圆周角的内部;

  ③ 圆心在圆周角的外部。

  设计意图:学生动手画圆周角,进一步熟悉圆周角,另一方面,预先探究出圆心与圆周角的三种位置关系,将难点分散,为后面证明圆周角定理作铺垫,降低证明难度。

  3、实验探究

  探究问题 同弧所对的圆周角与圆心角有什么关系?

  试验操作

  学生利用手中学案,当圆心角分别是锐角(450)、钝角(1100)和平角(1800)时,动手测量出弧BC所对的圆周角BAC和BDC的度数,比较它们的大小,然后在优弧BAC上任意取一点E,测量BEC的度数,探究同弧所对的圆周角与圆心角的关系。

  猜想结论 同弧所对的圆周角等于它所对的圆心角的一半。

  电脑验证 教师改变圆心角BOC的度数,再通过电脑测量弧AB所对的圆周角BAC和BDC的度数,进一步验证学生的猜想。

  设计意图:学生合作交流,探究并猜想同弧所对的圆周角与圆心角的数量关系,教师再通过电脑测量来验证,让学生进一步明确它们之间的关系。

  4、证明定理

  命题分析 命题:(电脑显示)同弧所对的圆周角等于它所对的圆心角的一半。

  学生说出已知、求证。

  问题:圆心与圆周角的三种位置关系中,哪一种位置关系最特殊?此时你能不能证明A= BOC?

  三种情况:

  第一种情况:圆心在圆周角一边上;

  第二种情况:圆心在圆周角的内部;

  第三种情况:圆心在圆周角的外部。

  定理证明 学生证明第一种情形(圆心在圆周角的一边上的情形):

  作直径AD。

  ∵OA=OC

  A=C

  又∵BOC=C

  BOC=2A

  即A= BOC

  利用基本图形(小红旗)及其对应的基本结论,引导学生证明当圆心在圆周角内部时的情形:

  ∵BAD= BOD,CAD= COD

  BAD+CAD= BOD+ COD

  即BAC= BOC

  情形(3)的证明推导,学生自己完成,教师用电脑展示。

  电脑动画展示:等圆中等弧的问题通过移动、旋转转化为同圆中中同弧的问题,从而得到圆周角定理:

  圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

  进一步,由学生分析出,当圆心角是180时,圆周角为90.再通过电脑动画展示,当圆心角逐渐变为180时,对应的圆周角变为90.从而得到圆周角定理的推论:

  圆周角定理推论 半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径。

  设计意图:教师引导,学生证明出圆周角定理及其推论,验证其猜想的正确性,激发学生学习数学的兴趣与成就感。

  三、应用巩固

  例1 如图,如果A=60.则BOD=____,BDC=____

  例2 如图,点A、B、C、D在同一个圆上,四边形ABCD的对角线把4个内角分成8个角,这些角中哪些是一定相等的角?

  拓展 若2=60.判断△BCD的形状并证明你的结论。

  设计意图:及时巩固本节课所学的核心知识,并注重知识的延伸,拓宽学生思维的深度和广度。

  四、解决问题:

  解决问题情境中的足球问题:过点P 、B、Q三点作圆,建立相应数学模型,学生分析题意,给出问题的答案:

  解法1:连结PD。

  ∵PDQ, A

  A

  将球传给乙,让乙射门好。

  解法2:连结CQ。

  ∵PCQ, A

  A

  将球传给乙,让乙射门好。

  设计意图:学以致用,数学来源于生活,服务于生活,运用数学解决问题。

  五、总结拓展

  1.本节学习的数学知识是圆周角的定义和圆周角定理及其推论。

  2.本节学习的数学思想是分类讨论和转化思想。

  设计意图:自我总结反思自己本节课的收获,养成良好的学习习惯。

  六、作业巩固

  设计意图:数学是做出来的,即要学又要练。运用本节课所学知识进行检测与反馈,进一步巩固、掌握所学新识

  40、《圆周角与圆心角的关系》教学反思

  本节课我认为是一节研究性的课,结论虽然简单、易用,但是探索的过程中体现了数学的分类思想与化归思想。如何让学生自然地理解是这节课的难点。最开始,我是>计划通过学生动手作圆周角来体会分类,但是考虑到时间的关系,没有让学生动手,尽管在后面对分类思想在本节课的应用进行了充分的讲解,但是对于学生自主探究还是有些欠缺,使学生对"为什么要分类"体会的不是很充分。这是本节节课比较遗憾的地方。另外,没有充分考虑到不同层次学生的需求。看了各位老师的建议,我获益匪浅,在今后上课的时候对各个环节更应充分的考虑。

  41、《圆周角与圆心角的关系》教学反思

  在本节课的教学中,我结合本节课教学内容、教学目标和学生的认知规律,在教学设计上,一是注重创设情境,激发学生学习的。兴趣、主动性和求知欲望, 为下一步教学的顺利展开开个好头;二是注重引导学生经历探索、验证、论证、应用数学新知的过程,鼓励学生用动手实践、自主探究、合作交流的>学习方法进行学 习,使学生在数学活动中深刻的理解知识和掌握由特殊到一般的认知方法。

  42、《圆周角与圆心角的关系》教学反思

  把射门游戏问题抽象为数学问题,研究圆周角和圆心角的关系,研究圆周角和圆心角的关系,应该说,学生解决这一问题是有一定难度的,尽管如此,教学时仍应给学生留有时间和空间,让他们进行思考。让学生经历观察、想象、推理、操作、描述、交流等过程,多种角度直观体验数学模型,而这也正符合本章学习的主要目标。

  43、《圆周角与圆心角的关系》教学反思

  本节课是在圆的基本概念和性质以及圆心角的概念和性质基础上,对圆周角定理进行探索。圆周角定理及推论在圆的有关说理、作图和计算中有着广泛的应用,也是学习圆的后续知识的重要预备知识,在教材中起着承上启下的作用。同时,圆周角定理及推论也是说明线段相等、角相等的重要依据之一。

  本节课的重点是圆周角的概念和经历探索圆周角定理及推论的过程,难点是合情推理验证圆周角和圆心角的关系。在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题不大。而对圆周角与圆心角的关系理解起来相对困难,特别是圆心在圆周角内部、圆心在圆周角外部这两种情况,因此在教学过程中我着重引导学生对这部分知识的探索与理解。还有些学生在运用知识解决问题的过程中忽略同弧的问题,在教学时我借用多媒体加以突出。

  本节课,以学生探究为主,配合多媒体辅助教学。在教学过程中,我将问题是教学法、启发式教学法、探究式教学法、情景式教学法、互动式教学法等多种教学法融为一体,创设富有挑战性的问题情境,引导学生用数学的眼光看问题,发现规律,验证猜想。在教学中,我还注重学生的个体差异,让不同层次的学生充分参与到数学思维活动中来,充分发挥学生的主体作用。运用适度的激励,帮助学生认识自我,建立自信,不仅“学会”,而且“会学”、“乐学”。引导学生采用动手实践、自主探究、合作交流的方式进行学习,使学生在观察、实践、问题转化等数学活动中充分体验探索的快乐,发现新知,发展能力。与此同时,我通过适时的点拨、精讲,使观察、猜想、转化、归纳、实践、推理、验证、分类讨论贯穿在整个教学观察之中。

  本节课的不足之处是:

  1、由于内容较多,节奏有点快,有部分学生掌握的不够好,还需时间巩固练习。

  2、教学流程设计的不太理想,如导课环节、互动探究环节。

  44、勾股定理的逆定理数学教案一等奖

  教学目标:

  一知识技能

  1.理解勾股定理的逆定理的证明方法和证明过程;

  2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;

  二数学思考

  1.通过勾股定理的逆定理的探索,经历知识的发生发展与形成的过程;

  2.通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用。

  三解决问题

  通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。

  四情感态度

  1.通过三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一关系;

  2.在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流合作的意识和探究精神。

  教学重难点:

  一重点:勾股定理的逆定理及其应用。

  二难点:勾股定理的逆定理的。证明。

  教学方法

  启发引导分组讨论合作交流等。

  教学媒体

  多媒体课件演示。

  教学过程:

  一复习孕新,引入课题

  问题:

  (1) 勾股定理的内容是什么?

  (2) 求以线段ab为直角边的直角三角形的斜边c的长:

  ① a=3.b=4

  ② a=2.5.b=6

  ③ a=4.b=7.5

  (3) 分别以上述abc为边的三角形的形状会是什么样的呢?

  二动手实践,检验推测

  1.把准备好的一根打了13个等距离结的绳子,按3个结4个结5个结的长度为边摆放成一个三角形,请观察并说出此三角形的形状?

  学生分组活动,动手操作,并在组内进行交流讨论的基础上,作出实践性预测。

  教师深入小组参与活动,并帮助指导部分学生完成任务,得出勾股定理的逆命题。在此基础上,介绍:古埃及和我国古代大禹治水都是用这种方法来确定直角的。

  2.分别以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边画出两个三角形,请观察并说出此三角形的形状?

  3.结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?

  三探索归纳,证明猜想

  问题

  1.三边长度分别为3 cm4 cm5 cm的三角形与以3 cm4 cm为直角边的直角三角形之间有什么关系?你是怎样得到的?

  2.你能证明以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边长的三角形是直角三角形吗?

  3.如图18.2-2.若△ABC的三边长

  满足

  ,试证明△ABC是直角三角形,请简要地写出证明过程。

  教师提出问题,并适时诱导,指导学生完成问题3的证明。之后,归纳得出勾股定理的逆定理。

  四尝试运用,熟悉定理

  问题

  1例1:判断由线段

  组成的三角形是不是直角三角形:

  (1)

  (2)

  2三角形的两边长分别为3和4.要使这个三角形是直角三角形,则第三条边长是多少?

  教师巡视,了解学生对知识的掌握情况。

  特别关注学生在练习中反映出的问题,有针对性地讲解,学生能否熟练地应用勾股定理的逆定理去分析和解决问题

  五类比模仿,巩固新知

  1.练习:练习题13.

  2.思考:习题18.2第5题。

  部分学生演板,剩余学生在课堂练习本上独立完成。

  小结梳理,内化新知

  六1.小结:教师引导学生回忆本节课所学的知识。

  2.作业:

  (1)必做题:习题18.2第1题(2)(4)和第3题;

  (2)选做题:习题18.2第46题。

  45、《圆周角和圆心角的关系》一等奖说课稿

  下面我从教材分析、教法学法分析、教学过程分析、设计说明四个方面来谈谈我是如何分析教材和设计教学过程的。

  教材分析

  教材的地位和作用

  本课是在学习了圆心角后进而要学习的圆的又一个重要的性质,它在推理、论证和计算中应用比较广泛,是圆这章的重点内容之一。

  依学情定目标

  我们面对的是已具备一定知识储备和一定认知能力的个性鲜明的学生,他们有较强的自我发展意识,根据新课程标准的学段目标要求,结合学生实际情况制订以下三个方面的教学目标:

  1)知识目标:了解圆周角和圆心角的关系,有机渗透“由特殊到一般”思想、“分类”思想、“化归”思想。

  2)能力目标:引导学生能主动地通过:实验、观察、猜想、验证“圆周角和圆心角的关系”,培养学生的合情推理能力、实践能力和创新精神,从而提高数学素养。

  3)情感目标:创设生活情境激发学生对数学的“好奇心、求知欲”,营造“民主、和谐”的课堂氛围,让学生在愉快的学习中不断获得成功的体验,培养学生以严谨求实的态度思考数学。

  3、教学重点、难点

  重点:经历探索“圆周角和圆心角的关系”的过程,了解“圆周角和圆心角的关系”

  难点:认识圆周角定理需分三种情况逐一证明的必要性。

  教法、学法分析

  数学教学是师生之间、学生之间交往互动与共同发展的过程,因此,我认为教法和学法是密不可分的。本课采用以探究式教学法为主,发现法、分组交流合作法、启发式教学法等多种方法相结合,以学生的活动为主线,突出重点突破难点,发展学生的数学素养。注重数学与生活的联系,引导学生用数学的眼光思考问题、发现规律、验证猜想;注重学生的个性差异,因材施教,分层教学;为了转变以往学生只是认真听讲、机械记忆、练习巩固的被动学习方式,以探究式学习和有意义接受式学习为指导,引导学生在动手实践、自主探索、合作交流活动中发现新知、发展能力,充分发挥学生的主体作用。教师运用多元的评价对学生适时、有度的激励,帮助学生认识自我,建立自信,以“我要学”的主人翁姿态投入学习,不仅“学会”,而且“会学”、“乐学”。

  教学过程分析

  1、创设情境,导入新课

  新课标指出“对数学的认识应处处着眼于人的发展和现实生活之间的密切联系”。根据这一理念和九年级学生的年龄特点、心理发展规律,联系生活中喜闻乐见的话题,创设有一定挑战性的问题情境,目的在于激发学生的探索激情和求知欲望。

  欣赏一段精彩的足球视频。

  学生依据自已在体育课上踢球的经验,思考:球员射中球门的难易程度与什么有关?

  设计意图:通过设计足球场景,联系中国足球现状,既能对学生进行爱国主义教育,又让学生在两种思维的碰撞中带着悬念进入新课的学习。

  2、读书指导,初步认知

  1)阅读教材,了解圆周角的概念,根据对概念的理解画圆周角,一学生板演。

  设计意图:充分利用教材,学好基础知识、基本概念,培养学生的读书能力和理解力,体现“学生是学习的主人”发挥学生的主体作用,掌握圆周角的定义。

  2)巩固练习,看谁最棒。(运用多媒体)

  判别下列各图形中的角是不是圆周角。

  设计意图:巩固圆周角概念,明确圆周角必须满足两个条件:顶点在圆上,角的两边分别与圆还有一个交点。

  3、分组讨论,解决问题

  荷兰数学家和数学教育家弗赖登塔尔的“再创造”数学教学模式强调:以学生的独立学习为基础的小组合作,全班交流,教师启导。本活动的设计让学生有自主探索、合作交流的`时间和空间,使学生经历探索圆周角和圆心角的关系的过程,体会由特殊到一般的思想方法。在学生分组探索“圆周角和圆心角的关系”的过程中教师深入课堂对学生适时的点拨、指导。师生互动,彼此形成一个“学习共同体”。

  1)动手操作,发现规律

  请同学们动手画出⊙O中弧AB所对的圆周角和圆心角。各小组总结出一共画了几种不同的情况?小组派代表板演。

  设计意图:通过这种具有探索性与挑战性的活动,培养学生独立思考、合作交流的能力,渗透化归思想,初步认识圆周角和圆心角的这三种位置关系。

  特别说明:若学生不能准确地归纳出圆周角和圆心角的这三种位置关系,教师可利用几何画板动态演示,让学生在教师的启发下达成这一教学目标。

  量一量弧AB所对的圆周角和圆心角的度数,看看有什么发现?

  设计意图:如果直接给出“同弧所对的圆周角是它所对的圆心角的一半”这一结论,学生会感到困惑,而让学生通过动手实践,对圆周角和圆心角度数的观察,自已发现规律,会让学生体验到成功的喜悦,为下面圆周角定理的证明打好桥铺好路。若在测量时没有发现这样的规律也不要紧,教师要对学生的实践过程而不只是对结果进行评价,教师仍可借助几何画板进行说明。

  2)团结合作,验证猜想

  有了实践的支撑,必须有理论的证明。学生按小组分组合作,自行探讨证明的方法。教师在巡视中若发现某一小组的活动出现了偏差,就深入其中进行引导,大声的进行点拔,让其它学生也能有所启发。学生在充分的合作交流后,已小有收获,于是分小组进行汇报,其它小组进行评价。在汇报的过程中,可能有的组只汇报了一种情况的证明过程,那么别的组就会依据自已的结果进行补充,从而让学生认识圆周角定理需分三种情况逐一证明的必要性。

  特别说明:由于“圆心在圆周角的一边上”这种情况,学生完全可以自己通过交流完成,这一步是第二、第三种情况证明的基础,如果对第二、第三种情况没有一个组想到证明的思路,教师就可利用几何画板进行启发,第二、第三种情况是否可转化成第一种情况解决,使学生认识到转化的条件是:加以角的顶点为端点的直径为辅助线。

  4、关注差异,分层教学

  设计意图:理解巩固“圆周角和圆心角的关系”和它的应用、满足不同层次学生需求,让不同的人在数学上得到不同的发展

  A层:一起试试看(运用多媒体)

  1、求圆O中角X的度数?

  设计意图:即可巩固圆周角定理,又可培养学生的竞争意识,以适应现代生活的需要。同时,对回答积极准确的同学及时表扬,激发学习的积极性。

  B层:再帮一个忙

  2、如图,A、B是圆O上的两点,且∠AOB=100°,C是圆O上不与A、B重合的任意一点,求∠ACB的度数。

  设计意图:因圆中有关点、线、角的位置关系复杂,学生往往对已知条件分析不够全面,会忽视某个条件,某种特殊情况,导致漏解。采用小组讨论的方式进行,并及时进行小组评价。

  C层:请你帮帮我

  如图:OA、OB、OC都是⊙O的半径 ,且∠AOB=2∠BOC、

  求证:∠ACB=2∠BAC、

  设计意图:让不同的人在数学上获得不同的发展,使一部分学生通过练习能灵活运用圆周角定理进行几何题的证明,规范步骤,提高利用定理解决问题的能力。

  5、课堂反思,师生小结

  学生谈收获和感受,教师小结。(提示学生从三方面入手:①学到了什么知识;②掌握了哪些数学方法;③体会到了哪些数学思想。)(运用多媒体)

  设计意图:使学生体验交流的快乐,感受成功的喜悦。使学生对本节内容有一个更系统、更深刻的认识,提高学生自主建构知识网络、解决问题的能力,达到触类旁通。

  6、学以致用,作业适量(附:板书设计)

  圆周角和圆心角的关系

  圆周角概念: 探究活动

  一条弧所对的圆周角等于它所对的圆心角的一半

  数学思想

  设计说明

  本教学设计突出以下五点:

  1、 设计足球场景,数学联系生活;

  2、 加强教材利用,培养读书能力;

  3、 强化合作意识,创设沟通氛围;

  4、 电脑辅助教学,课堂轻松简捷;

  5、 注重因材施教,合理分层教学。

  46、园周角定理教学反思

  园周角定理是高考频繁出现的考点,它的内涵和外延到高三有的学生都弄不清楚,更难以解决实际问题。下面是小编整理的园周角定理教学反思,欢迎来参考!

  本节课是在圆的基本概念和性质以及圆心角的概念和性质基础上,对圆周角定理进行探索。圆周角定理及推论在圆的有关说理、作图和计算中有着广泛的应用,也是学习圆的后续知识的重要预备知识,在教材中起着承上启下的作用。同时,圆周角定理及推论也是说明线段相等、角相等的重要依据之一。

  本节课的重点是圆周角的概念和经历探索圆周角定理及推论的过程,难点是合情推理验证圆周角和圆心角的关系。在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题不大。而对圆周角与圆心角的关系理解起来相对困难,特别是圆心在圆周角内部、圆心在圆周角外部这两种情况,因此在教学过程中我着重引导学生对这部分知识的探索与理解。还有些学生在运用知识解决问题的过程中忽略同弧的问题,在教学时我借用多媒体加以突出。

  本节课,以学生探究为主,配合多媒体辅助教学。在教学过程中,我将问题是教学法、启发式教学法、探究式教学法、情景式教学法、互动式教学法等多种教学法融为一体,创设富有挑战性的问题情境,引导学生用数学的眼光看问题,发现规律,验证猜想。在教学中,我还注重学生的个体差异,让不同层次的学生充分参与到数学思维活动中来,充分发挥学生的主体作用。运用适度的激励,帮助学生认识自我,建立自信,不仅“学会”,而且“会学”、“乐学”。引导学生采用动手实践、自主探究、合作交流的方式进行学习,使学生在观察、实践、问题转化等数学活动中充分体验探索的快乐,发现新知,发展能力。与此同时,我通过适时的点拨、精讲,使观察、猜想、转化、归纳、实践、推理、验证、分类讨论贯穿在整个教学观察之中。

  1、复习:

  (1)什么是圆心角?

  (2)圆心角的度数定理是什么?

  2、什么是圆周角:

  如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周角。

  定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角

  即 ,就可以用直接开平方求出方程的解。如果n<0.则原方程无解。

  3、圆周角的.定理

  1、提出圆周角的度数问题

  问题:圆周角的度数与什么有关系?

  引导学生在建立关系时注意弧所对的圆周角的三种情况:

  圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部。

  (在教师引导下完成)

  (1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半。必须用严格的数学方法去证明。

  证明:(圆心在圆周角上)

  (2)其它情况,圆周角与相应圆心角的关系:

  当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论。

  证明:作出过O的直径(自己完成)

  可以发现同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对等于它所对圆心角的一半。

  说明:这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想。(对A层学生渗透完全归纳法)

  本节课的不足之处是:

  1、由于内容较多,节奏有点快,有部分学生掌握的不够好,还需时间巩固练习。

  2、教学流程设计的不太理想,如导课环节、互动探究环节。

  47、余弦定理的教案一等奖

  一、教学内容分析

  人教版《普通高中课程标准实验教科书·必修(五)》(第2版)第一章《解三角形》第一单元第二课《余弦定理》。通过利用向量的数量积方法推导余弦定理,正确理解其结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”,体会方程思想,激发学生探究数学,应用数学的潜能。

  二、学生学习情况分析

  本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的`边角关系有了较进一步的认识。在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。

  三、设计思想

  新课程的数学提倡学生动手实践,自主探索,合作交流,深刻地理解基本结论的本质,体验数学发现和创造的历程,力求对现实世界蕴涵的一些数学模式进行思考,作出判断;同时要求教师从知识的传授者向课堂的设计者、组织者、引导者、合作者转化,从课堂的执行者向实施者、探究开发者转化。本课尽力追求新课程要求,利用师生的互动合作,提高学生的数学思维能力,发展学生的数学应用意识和创新意识,深刻地体会数学思想方法及数学的应用,激发学生探究数学、应用数学知识的潜能。

  四、教学目标

  继续探索三角形的边长与角度间的具体量化关系、掌握余弦定理的两种表现形式,体会向量方法推导余弦定理的思想;通过实践演算运用余弦定理解决“边、角、边”及“边、边、边”问题;深化与细化方程思想,理解余弦定理的本质。通过相关教学知识的联系性,理解事物间的普遍联系性。

  五、教学重点与难点

  教学重点是余弦定理的发现过程及定理的应用;教学难点是用向量的数量积推导余弦定理的思路方法及余弦定理在应用求解三角形时的思路。

  六、教学过程:

  七、教学反思

  本课的教学应具有承上启下的目的。因此在教学设计时既要兼顾前后知识的联系,又要使学生明确本课学习的重点,将新旧知识逐渐地融为一体,构建比较完整的知识系统。所以在余弦定理的表现方式、结构特征上重加指导,只有当学生正确地理解了余弦定理的本质,才能更好地应用求解问题。本课教学设计力求在型(模型、类型),质(实质、本质),思(思维、思想方法)上达到教学效果。本课之前学生已学习过三角函数,平面几何,平面向量、解析几何、正弦定理等与本课紧密联系的内容,使本课有了较多的处理工具,也使余弦定理的探讨有了更加简洁的工具。因此在本课的教学设计中抓住前后知识的联系,重视数学思想的教学,加深对数学概念本质的理解,认识数学与实际的联系,学会应用数学知识和方法解决一些实际问题。学生应用数学的意识不强,创造力不足、看待问题不深入,很大原因在于学生的知识系统不够完善。因此本课运用联系的观点,从多角度看待问题,在提出问题、思考分析问题、解决问题等多方面对学生进行示范引导,将旧知识与新知识进行重组拟合及提高,帮助学生建立自己的良好知识结构。

  48、余弦定理的教案一等奖

  一、教材分析

  《余弦定理》选自人教A版高中数学必修五第一章第一节第一课时。本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。

  余弦定理的学习有充分的基础,初中的勾股定理、必修一中的向量知识、上一课时的正弦定理都是本节课内容学习的知识基础,同时又对本节课的学习提供了一定的方法指导。其次,余弦定理在高中解三角形问题中有着重要的地位,是解决各种解三角形问题的常用方法,余弦定理也经常运用于空间几何中,所以余弦定理是高中数学学习的一个十分重要的内容。

  二、教学目标

  知识与技能:

  1、理解并掌握余弦定理和余弦定理的推论。

  2、掌握余弦定理的推导、证明过程。

  3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。 过程与方法:

  1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。

  2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。

  3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。

  情感态度与价值观:

  1、在交流合作的过程中增强合作探究、团结协作精神,体验 解决问题的成功喜悦。

  2、感受数学一般规律的美感,培养数学学习的兴趣。

  三、教学重难点

  重点:余弦定理及其推论和余弦定理的运用。

  难点:余弦定理的发现和推导过程以及多解情况的判断。

  四、教学用具

  普通教学工具、多媒体工具 (以上均为命题教学的准备)

声明:部分内容来源于网络,如有侵权,请联系删除!